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1 Introduction 

Over 135 countries have adopted renewable energy deployment targets, with particular focus on 
harnessing wind and solar energy for electricity production (REN21 2013). South Africa’s 
aspirations are particularly noteworthy given its heavy reliance on coal, which supplies more than 
90 per cent of the country’s electricity. The government’s integrated resource plan (IRP) for the 
power sector, approved in 2011, slates wind and solar power (WSP) to provide 21 per cent of 
generating capacity by 2030 (DOE 2011). Planning scenarios developed by the state-owned utility 
Eskom envision WSP penetration potentially reaching 40 per cent by 2040 (Eskom 2012). 

Estimations of wind potential in South Africa have varied from 7.9 TWh (terawatt hours) (Diab 
1985) to 106 TWh (Banks and Schäffler 2007). Note that the more recent studies estimate higher 
wind power potential than the older studies. This pattern of increased estimates persisted from 
1985 to 2007. The most detailed estimate comes from Hagemann (2008), who estimated South 
Africa’s generation potential to be: 80.54 TWh with a realistic estimation, 157.18 with an optimistic 
estimation, and 20.06 TWh with a pessimistic estimation. Solar potential is estimated to be much 
higher than wind potential in South Africa, although there are fewer estimates in the literature. The 
most recent estimate found is included in Fluri (2009), who estimates concentrating solar power 
(CSP) potential to be 547.6 GW (gigawatt), producing about 1,861 TWh annually. The majority of 
this potential is in the Northern Cape, with an estimated potential of 510.3 GW.  

While WSP offers many socioeconomic and environmental benefits, it also introduces unique 
challenges. Wind and solar resources vary significantly across space and time; WSP is inherently 
intermittent (Hansen 1998; Peterson et al. 1997). There are many ways to mitigate this 
intermittency as presented by Delucchi and Jacobson (2011). The most accessible, and often the 
cheapest option for control over the magnitude and timing of WSP generation is in the siting of 
projects across space. Once a project is constructed, weather patterns dictate performance. 

In contrast, the magnitude and timing of conventional generation is controlled by plant operators; 
fossil fuel generators are highly dispatchable. Replacing dispatchable generation with intermittent 
WSP, as power sectors around the world hope to do, makes it more difficult to ensure that power 
is available when needed. The reliability and cost of power systems with high penetration of WSP 
are determined by the nature of wind and solar resources in the region, the way in which WSP 
technologies are distributed across space, and the ability of conventional generators to 
accommodate intermittency. 

South Africa and other countries face a common challenge: how to turn laudable renewable power 
aspirations into concrete plans. This is an exceptionally complex task, and it hinges largely on the 
question of how and where to deploy WSP. Well-designed deployment strategies can take 
advantage of natural variability in WSP resources across space and time to minimize costs and 
maximize benefits, while ensuring reliability. Poor deployment strategies risk locking countries into 
multi-decade infrastructure investments that unnecessarily increase the cost of electricity. 

Given the tremendous complexity and long-time horizons involved, robust data and modelling 
techniques are needed to inform power sector planning and project procurement. Existing 
investment allocation models like MARKAL (Fishbone and Abilock 1981) or BALMOREL (as 
demonstrated in Ball et al. 2007) have been around for decades. These models, which were 
originally designed for conventional energy investment, model energy investment evolution over 
40 to 50 years, using representative time slices (e.g. weekend-night) for expected power supply. 
The main differences between the modelling in this study and these existing investment planning 
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models is that (1) we simplify the model by focusing decisions on WSP investment whereas the 
preceding models allow investment in all energy generating types, (2) we model the system at a 
snapshot in 2040, rather than the investment progression over time and (3) we model at an hourly 
time-step for 10 years with consecutive realistic generation estimates rather than using 
representative time slices. Differences (1) and (2) are simplifications used in this study, but are not 
necessary. The main contribution to the current body of literature is (3), which is more important 
for modelling WSP than for conventional supply because of the intermittency associated with WSP 
generation; traditional capacity estimates do not address the risk of intermittency (Gunturu and 
Schlosser 2012; Philbrick 2011). For this reason, the use of multi-year, hourly time series is critical 
to accurate calculation of long-term reliability of intermittent sources. In an analysis of high-
resolution wind power data from Ireland, Hasche et al. (2011) show that at least five years of hourly 
data (and ideally more) are needed to accurately calculate the ability of the wind power fleet to 
contribute to system adequacy. Longer time series, such as the ten years of hourly data used here, 
capture the considerable inter-annual variability that shorter time series miss.  

A number of studies have assessed the value of wind and solar site interconnection using a 
consecutive hourly to sub-hourly time-step (among others, Elhadidy 2000; Reichling and Kulacki 
2007). These studies analyse the benefits of connecting a few sites in a study region, less than 20, 
and over short periods, one to two years. These studies provide insight into the techniques used 
to assess small-scale interconnection possibilities and benefit from site simplicity but provide less 
insight into national-scale wind and solar build-out targets. On the other hand, a number of studies 
have assessed large-scale penetration of wind and solar technologies; most also include biomass 
and hydropower: among others, Parsons-Brinckerhoff (2009) for the UK; Pricewaterhouse-
Coopers et al. (2010) for Europe and North Africa; Alliance for Climate Protection (2009) for the 
United States; and Jacobson and Delucchi (2011) for the globe. These studies present technically 
feasible energy build-out targets where either the majority (greater than 80 per cent) or all power 
is generated with renewable energy. While these exercises are useful optimistic goals, they are not 
likely to become a reality in coming decades, restricted by a lack of realistic political and/or 
economic support.  

This study addresses the case of South Africa in two ways: First, expected generating efficiency for 
key WSP technologies is modelled at hourly resolution over a 10-year period across the country. 
Second, a simple power system model is used to simulate the economic and environmental 
performance of different WSP deployment scenarios in the year 2040. The basic objective is to 
demonstrate the ability of low-cost data and modelling techniques to capture the spatiotemporal 
dynamics critical to power systems with high penetration of WSP and to quantify the potential 
savings from better long-term planning.1  

Section 2 describes the development of a 10-year, hourly resolution database of wind speed, solar 
radiation, and general meteorological conditions for South Africa. Section 3 describes how the 
physical resource data are used to model the expected hourly performance of onshore wind farms, 
utility-scale photovoltaic (PV), and CSP facilities. Section 4 summarizes observed spatiotemporal 
patterns in WSP generating efficiency. Section 5 describes the creation of projected hourly load 
data for 2040. Section 6 describes the development of a simple power system model and WSP 
deployment scenarios for 2040. Section 7 presents simulation results for those scenarios. Section 
8 discusses the results and potential for spatiotemporal modelling to improve WSP deployment 
outcomes and project procurement in South Africa and other countries. 

                                                 
1 This work was also published as a working paper through the Center for Global Development (Ummel 2013). 



 3

2 Wind and solar resource data 

Modelling of WSP technologies requires numerous data inputs, ideally at high spatial and temporal 
resolution. This section describes the creation of hourly resource variables over a 10-year period 
at 0.125º spatial resolution by combining output from NASA’s Goddard Earth Observing System 
(GEOS-5) climate model with surface solar irradiance data from the Climate Monitoring Satellite 
Application Facility (CM-SAF) and data produced by the Wind Atlas for South Africa (WASA) 
project.2 The resulting data include global and diffuse horizontal irradiance, direct normal 
irradiance, wind speed at 10 m and 100 m above ground level (a.g.l.), and additional ‘secondary’ 
variables like wind direction, ambient temperature, relative humidity, air pressure, and surface 
albedo. 

2.1 Wind speed 

High-resolution wind speed datasets from numerical weather modelling are commercially available 
but typically cost-prohibitive for large-scale analysis. The approach described below combines 
output from NASA’s GEOS-5 climate model with data from the numerical wind atlas produced 
by the WASA project. Together, these data allow the generation of plausible hub-height hourly 
wind speed time series for the period 1996 through 2005 for a region in the south-west of the 
country covering the majority of the documented wind potential, including most of the Western 
Cape and parts of the Northern and Eastern Cape provinces. 

NASA’s Modern Era Retrospective Analysis for Research and Applications (MERRA) project 
utilizes the GEOS-5 climate model to produce a global assimilation and re-analysis of the satellite 
and surface record from 1979 to present (Rienecker et al. 2008). MERRA/GEOS-5 (version 5.2) 
provides the highest-resolution global reanalysis output currently available and provides boundary 
conditions for operational weather forecasts and higher-resolution numerical weather models. 

Initial estimates of hourly wind speed at 10 m and 100 m a.g.l. are created using surface friction 
velocity from GEOS-5 in conjunction with the logarithmic wind profile, assuming neutral stability. 
Gunturu and Schlosser (2012) use the same data and technique in their analysis of wind power 
resources in the United States. Surface friction velocity at the native GEOS resolution is bilinearly 
downscaled to the 0.125º resolution and the logarithmic profile applied (Eq. 1). 

V z=
us

k [log (
z− d

z0
)]

          (1) 

Vz is the horizontal wind velocity at height z above ground level, us is the surface friction velocity, 
k is the von Karman constant (0.41), d is the displacement height, and z0 is the roughness length. 

The surface roughness data are constructed from the United States Geological Survey (USGS) 
Global Land Cover Characteristics v2.0 database3 with a native resolution of ~0.01º, using a land-
cover-to-surface roughness look-up table provided by the WASA project. Displacement height is 
assumed to be two-thirds of the mean vegetation height, as given by Simard et al. (2011) at a native 
resolution of ~0.01º. 

The coarse spatial resolution of the GEOS-5 model does not sufficiently capture small-scale wind 
patterns driven by microclimates and local orography. The WASA project has generated a high-
resolution (~5 km) climatological wind speed database for a region covering the south-west of the 
                                                 
2 See: www.wasaproject.info 
3 See: http://edc2.usgs.gov/glcc/globe_int.php 



 4

country. This wind atlas better reflects local terrain but (to date) only provides the long-term wind 
speed distribution at various heights for a given site, not hourly time series. 

Estimated hourly wind speed data from GEOS-5 and wind speed distribution data from WASA 
are combined to create hub-height (100 m a.g.l.) time series. The WASA data are processed to 
extract long-term Weibull distribution parameters describing the expected wind speed distribution 
at ~14,000 sites. For each 0.125º downscaled MERRA grid cell, a Weibull distribution is fitted to 
the GEOS-5 100 m a.g.l. hourly wind speed and each observation converted to its distribution p-
value. Next, for each WASA site within a given grid cell, the p-values are translated to hourly mean 
wind speed using the Weibull distribution provided by WASA. The resulting time series are 
averaged to produce a single, long-term hourly time series for each 0.125º grid cell. Figure 1 
illustrates the data processing chain. 

Figure 1: Wind speed series (100 m a.g.l.) processing chain 

Source: Authors’ creation. 

2.2 Solar radiation 

Surface solar radiation data are provided by CM-SAF and include both global and direct mean 
hourly irradiance on a horizontal surface. The data result from processing the first-generation 
Meteosat satellite record from 1983 to 2005 (Mueller et al. 2012; Posselt et al. 2012). Three satellite 
observations are used to construct each hourly mean. The processing algorithm uses effective 
cloud albedo to estimate cloud transmissivity when calculating irradiance at the surface. 

Hourly data were obtained for the period 1 January 1996 through 31 December 2005 for all of 
South Africa. Though available at a native spatial resolution 0.03º, mean irradiance was extracted 
at 0.125º resolution to reduce computational demands. Global and direct horizontal irradiance, in 
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conjunction with standard astronomical position algorithms, were used to calculate hourly direct 
normal irradiance (DNI). The 10-year record was also processed to determine the maximum 
hourly ‘DNI-cosine product’ for each grid cell, using equations and assumptions of Wagner and 
Gilman (2011). This quantity is critical to specifying the solar field design parameters of CSP 
systems (see Section 3).4 

2.3 Secondary variables 

Additional variables were extracted from GEOS-5 model output, including ambient air 
temperature, specific humidity, surface air pressure, wind direction, and surface albedo. All were 
bilinearly downscaled to 0.125º resolution. Temperature and pressure were additionally adjusted 
for local elevation using standard environmental lapse rates. These variables and standard 
meteorological formulae allow the calculation of additional quantities (e.g. relative humidity, dew-
point temperature) necessary for accurate modelling of generating efficiency (see Section 3). 

3 Modelling WSP generating efficiency 

The physical resource time series serve as inputs to the National Renewable Energy Laboratory’s 
System Advisor Model (SAM) software, allowing hourly simulation of generating efficiency for 
hypothetical PV, CSP, and wind farm installations. This section describes the chosen SAM system 
parameters for each technology. Simulations were conducted with SAM software v2013.1.15 
(Gilman and Dobos 2012; SAM 2013). A full 10 years of hourly meteorological data (including 
‘secondary variables’ described above) are used as inputs to SAM, resulting in 10-year hourly 
generating efficiency time series. 

It is not necessary (nor computationally convenient) to model hourly efficiency for every grid cell. 
Instead, for each WSP technology a subset of grid cells is selected. The SKATER spatial clustering 
algorithm is used to segment grid cells into contiguous clusters of a minimum size (2,500 km2 for 
wind and 5,000 km2 for PV and CSP), with clusters selected so they contain resource time series 
that have similar diurnal profiles over each season (Lage et al. 2001). 

That is, the primary physical resource time series for wind, PV, and CSP technologies (hub-height 
wind speed, global horizontal irradiance [GHI], and DNI, respectively) are used to cluster grid 
cells in a way that distinguishes between areas with different temporal resource regimes. Within 
each cluster returned by SKATER, the grid cell with the highest mean annual resource value is 
then chosen for modelling in SAM. This technique reduces computational demands, while 
ensuring that the sampled sites capture the range of spatiotemporal diversity in the full dataset. 

3.1 Onshore wind power 

The wind farm model assumes a 100 MW array consisting of 50 Vesta v90 2.0 MW turbines with 
100 m hub height and 90 m rotor diameter. The turbines are laid out in a 5×10 rectangular field, 
with downstream and transverse turbine spacing equal to 10 and 5 rotor diameters, respectively. 
For each simulated site, the array is oriented so that the downstream spacing is parallel to the 
predominant wind direction observed over the 10-year wind speed time series in order to more 

                                                 
4 There are occasional gaps in the CM-SAF radiation data, typically about two days per year. Missing data are replaced 
with the mean value for the same hour over the preceding and proceeding five days. The one exception is an extended 
period of missing direct horizontal irradiance data from 9 June 1997 to 30 June 1997. Replacement values are generated 
by calculating the hourly ratio of direct to global horizontal irradiance for the same period in 1998 and then applying 
the ratios to observed hourly global horizontal irradiance in 1997. 
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accurately capture losses due to wake effects. All other variables are set to SAM default values. 
Turbine and array performance are simulated using the wind farm model of Quinlan (1996). 

3.2 Photovoltaic power 

The PV model assumes the use of 230 Jinko Solar JKM230M-60B monocrystalline modules in 
conjunction with SMA Solar SB10000TL inverters. The modules are ground-mounted on single-
axis east–west tracking arrays utilizing a backtracking algorithm and maximum rotation of +/- 60 
degrees. Array spacing assumes a ground cover ratio of 0:4. All other variables are set to SAM 
default values. Module performance is simulated using the California Energy Commission (CEC) 
model and associated module characteristics database (De Soto 2004; Dobos 2012). Temperature 
correction is provided by the nominal operating cell temperature (NOCT) model of Neises (2011). 
Inverter performance is simulated using the Sandia National Laboratories model of King et al. 
(2007) and associated inverter database. 

3.3 Concentrating solar power 

The CSP model assumes a 100 MWnet facility with parabolic trough collector technology, air-cooled 
condensers, and six hours of molten salt storage capability. The IRP includes cost assumptions for 
CSP facilities with zero, three, six, and nine hours of thermal storage. Six hours was chosen as a 
middle-of-the-road value. In practice, the amount of storage is likely to vary across facilities. It is 
expected that air-cooled condensers will be preferred in water-scarce areas. 

For each simulated site, the solar field is sized to provide a solar multiple of 2.5 at the design 
irradiance point, with the latter equal to the maximum hourly DNI-cosine product calculated over 
the entire 10-year time series. Variables other than those discussed below are set to SAM default 
values. System performance is simulated using the physical trough model of Wagner and Gilman 
(2011). 

Because CSP systems (and especially those with storage capability) exhibit thermal inertia, 
generating efficiency in a given hour can be controlled, to some degree, by the plant operator. This 
unique behaviour is most relevant during periods of high electricity demand, when system and 
plant operators may wish to curtail generation in the hours preceding peak demand in order to 
charge the storage system and allow maximum electricity generation when it is needed most (for 
example, in the evening after the sun has set). 

In practice, optimal or near-optimal behaviour of this kind is determined endogenously and 
dictated by complex, real-time power system considerations, weather forecasts, electricity prices, 
etc. The parameters guiding SAM’s internal CSP plant control algorithm (which decides when to 
direct energy to the generator block versus storage) are adjusted in an attempt to approximate such 
behaviour exogenously. 

Projected electricity demand, operating costs, generating fleet characteristics, and representative 
wind and PV generating efficiency time series are used to estimate marginal running costs (i.e. per 
unit revenue in a competitive electricity market) that might confront South African CSP operators 
for various hours of the year in 2040 (per the scenarios described in Section 6). High marginal 
running costs indicate hours when the generating fleet is operating near capacity and additional 
generation (provided by CSP plants) is highly valued. In South Africa, this primarily occurs during 
winter evenings (see Section 5). 

This information was introduced into SAM’s thermal storage dispatch schedule and, for a small 
set of representative locations, the parameters guiding plant operation were optimized to find those 
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that minimized the levelized cost of electricity. Those parameters were then applied universally 
when simulating the performance of other sites. The net result is suppressed CSP generation 
during winter afternoons in order to provide maximum output during the evening. Outside of 
winter (May–August), the default plant control algorithm is used. 

4 Spatiotemporal patterns in expected generating efficiency 

The SAM simulations result in 10-year hourly generating efficiency time series for 176 PV sites, 
178 CSP sites, and 110 wind farm sites. This section summarizes the spatial and temporal patterns 
observed in those data. 

The term ‘generating efficiency’ is used here to specify mean hourly power output as a fraction of 
net generating capacity. It is synonymous with ‘hourly capacity factor’. A generating efficiency of 
one indicates the technology is capable of operating at maximum capacity during the hour. 

The WSP generating efficiency time series analysed in this section are available to the public per 
the Center for Global Development’s data disclosure policy. Data files and sample code can be 
downloaded from the website.5 

4.1 Exclusion of areas deemed infeasible 

The maps below exclude areas (indicated by white grid cells) that are considered infeasible for 
siting of facilities. The exclusion screens are from Ummel (2011), which provides high-resolution 
WSP screens at global scale built from a range of geospatial data layers. The technology-specific 
screens consider land cover, terrain slope, proximity to human populations, geomorphology, and 
protected areas and parks. 

4.2 Long-term mean efficiency across space 

In the interest of providing long-term mean generating efficiency maps, the 10-year time series 
results were averaged over the full period for each modelled grid cell and technology. The results 
were then spatially interpolated for non-modelled grid cells using a combination of universal 
kriging and an automatic variogram fitting procedure (Hiemstra et al. 2009). For each technology, 
the kriging model includes an observed variable in addition to location. For wind, the predictor is 
mean hourly hub-height wind speed converted to generating efficiency via a generic wind turbine 
power curve. Mean hourly GHI and DNI are used for PV and CSP, respectively. 

Long-term wind farm generating efficiency (100 m hub height) reaches up to 50 per cent in the 
most suitable locales (Figure 2). The extent of the study area is restricted to the area covered by 
the WASA numerical wind atlas. The most efficient locales cluster in the Western Cape, to the 
north-east and south-east of Cape Town, and in the northern reaches of the Eastern Cape. There 
is also evidence of strong, but spatially limited, potential among coastal sites in the Northern Cape. 

  

                                                 
5 See: http://www.cgdev.org/page/research-data-and-code-disclosure and 
http://www.cgdev.org/section/publications?f[0]=field_document_type%3A2057 
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Figure 2: Mean modelled wind farm (100 m hub height) generating efficiency (1996–2005) 

 
Source: Authors’ creation (data modelled by SAM).  

Figure 3: Mean modelled utility-scale PV (monocrystalline) generating efficiency (1996–2005) 

 

Source: Authors’ creation (data modelled by SAM). 
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Figure 4: Mean modelled CSP (6-hour storage; air-cooled) generating efficiency (1996–2005) 

 
Source: Authors’ creation (data modelled by SAM). 

It is important to mention that the wind farm exclusion screen specifically excludes cropland. 
Although wind turbines can be placed on agricultural land, conversations with Eskom staff 
indicated likely resistance to wind farm development among agricultural interests in South Africa. 
Some areas with good wind resources are consequently excluded from Figure 2 and the subsequent 
analysis. 

Long-term PV generating efficiency exceeds 30 per cent in the highest-efficiency sites in the 
Northern Cape (Figure 3). The best sites are located significantly to the west, with some high-
quality locales stretching south into the Western Cape. There are moderate PV resources in the 
north-east around the Pretoria/Johannesburg area. 

Long-term CSP (6-hour storage) generating efficiency is up to 50 per cent among the highest-
efficiency sites in the Northern Cape (Figure 4). Notice that the best CSP sites show a different 
geographic distribution than for PV, reflecting the different solar irradiance and temperature 
dependence of the technologies. Similar to PV, there are some moderately good CSP resources 
located closer to population centres in the Western Cape and Pretoria/Johannesburg area. 

4.3 Peak period efficiency across space 

The performance of WSP technologies during periods of high electricity demand is of particular 
interest from the standpoint of integration and reliability. Section 5 describes the generation of 
projected hourly electricity demand for the South Africa power system in 2040. On the basis of 
those results, three periods of particularly high electricity demand are identified: (1) winter evenings 
(MJJ [May, June, July] 5–8PM); 2) winter mornings (MJJ 8–12AM); and (3) spring evenings (ASO 
[Aug., Sept., Oct.] 6–8PM). A fourth ‘period’ is also included, consisting of hours exhibiting load 
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within the top 1 per cent of all hours, given that information derived from this hourly subset is 
known to be useful for approximating the ability of WSP resources to contribute to reliability 
targets (Milligan and Porter 2008). Mean generating efficiency maps were created for each of the 
periods, using the same spatial interpolation technique described above for long-term mean 
efficiency. 

Figure 5: Mean modelled wind farm generating efficiency, by high-load period (1996–2005) 

  (a) Winter evening (MJJ 5–8PM)                  (b) Winter morning (MJJ 8–12AM) 

(c) Spring evening (ASO 6–8PM)                     (d) Top 1 per cent of load hours    
          

Source: Authors’ creation (data modelled by SAM). 

Among the four periods in Figure 5, wind generating efficiency is highest during winter mornings, 
with the best locales reaching mean hourly capacity factors of 70 per cent. Conversely, during 
winter evenings (the primary peak period), the best sites reach (on average) only 30 per cent. The 
geographic location of the best sites is also very different between periods. During winter 
mornings, the best locales are found in the north-east reaches of the Eastern Cape. In the evenings, 
however, the best locales congregate in the Western Cape, south-west of Cape Town. This is 
consistent with diurnal wind speed patterns that favour daytime wind power production over 
evenings (see Figure 8). 

PV and CSP generating efficiency during peak periods generally reflects east-to-west variations in 
the height of the sun but with technology-specific differences (Figures 6 and 7). In the case of PV, 
efficiency is highest during winter mornings, with the evening peak periods exhibiting considerably 
lower output. Note, however, that the locales most suitable for winter morning generation are to 
the east and do not overlap with those identified in Figure 3 as most suitable for long-term 
efficiency. 

Due to thermal inertia and storage, winter mornings are the period of lowest generating efficiency 
in the case of CSP. The other periods (dominated by evening hours) exhibit much higher 
efficiencies in the best locales but with geographic differences between periods. In particular, the 
sites most suitable for spring evening generation are quite different from those most suitable for 
winter evenings—and both are different from the best long-term locales identified in Figure 4. 
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Figure 6: Mean modelled utility-scale PV generating efficiency, by high-load period (1996–2005) 

  (a) Winter evening (MJJ 5–8PM)                    (b) Winter morning (MJJ 8–12AM) 

   (c) Spring evening (ASO 6–8PM)                    (d) Top 1 per cent of load hours    
          

Source: Authors’ creation (data modelled by SAM). 

  



 12

Figure 7: Mean modelled CSP generating efficiency, by high-load period (1996–2005) 

  (a) Winter evening (MJJ 5–8PM)                     (b) Winter morning (MJJ 8–12AM) 

   (c) Spring evening (ASO 6–8PM)                     (d) Top 1 per cent of load hours    
         

Source: Authors’ creation (data modelled by SAM). 

4.4 Diurnal trends across seasons 

The generating efficiency of WSP technologies often varies predictably over the course of a day 
(diurnal pattern) and seasons. The diurnal behaviour of WSP determines the nature of its 
interaction with load and conventional technologies within the power system. Figures 8 through 
10 summarize a large amount of hourly data to reveal typical diurnal patterns, by season and WSP 
technology, across the whole of South Africa. Each coloured line shows the mean diurnal pattern 
for an individual modelled site. The black line shows the mean diurnal pattern across all modelled 
sites. Although certain trends are evident, there is also considerable variability as a result of the 
inherent spatial diversity. 
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Figure 8: Mean diurnal generating efficiency, by season, for 110 modelled wind sites (1996–2005) 

 
Note: FMA – Feb., March, April; NDJ – Nov., Dec., Jan.  

Source: Authors’ creation (data modelled by SAM). 

Figure 9: Mean diurnal generating efficiency, by season, for 176 modelled PV sites (1996–2005) 

 
Source: Authors’ creation (data modelled by SAM). 
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Figure 10: Mean diurnal generating efficiency, by season, for 178 modelled CSP sites (1996–2005) 

 
Source: Authors’ creation (data modelled by SAM). 

Wind power resources within the assessed region show a clear tendency towards higher generating 
efficiency during the day. The general diurnal pattern of higher daytime efficiency is evident across 
all four seasons. The summer (NDJ) diurnal pattern is particularly pronounced, with efficiency 
peaking in the late afternoon. Winter (MJJ) generating efficiencies are significantly lower, with a 
less pronounced daytime peak and particularly low early evening output. 

PV power resources exhibit a predictable diurnal pattern, though with significant variation 
reflecting geographic and seasonal differences. On average, summer generating efficiency remains 
relatively high into early evening, with some locales showing mean capacity factors in excess of 50 
per cent in the 6–7PM period. Winter generation truncates earlier in the day. The peak efficiency 
over the course of a given day does not differ much between seasons. 

CSP resources are able to extend generation far into the evening, particularly in summer where 
some locales exhibit capacity factors in excess of 50 per cent through midnight. The clearly 
different winter diurnal profile reflects the modified plant control algorithm used during that 
season (see Section 3). The algorithm effectively suppresses electricity generation during midday 
and early afternoon hours in order to charge the storage system and maximize output during peak 
period winter evenings. Notice the considerable variation across sites in CSP generating efficiency 
during evening and night-time hours. Because performance during those hours is largely 
determined by the accumulation of solar energy over the course of the day, relatively small daytime 
differences in generating efficiency are not inconsistent with large differences in generating 
efficiency after sunset. 
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5 Hourly electricity demand 

Data on hourly, system-wide electricity demand (load) in South Africa during 2010 and 2011 were 
provided by Eskom staff. The power sector scenarios described in Section 6 are for the year 2040, 
requiring present-day load be projected to that date. 

Between the present and 2040, electricity demand in South Africa is expected to increase 
appreciably. The IRP provides projected mean and maximum load for South Africa through 2030, 
which are then linearly extrapolated to 2040. Mean hourly load is assumed to grow 75 per cent 
(from 28 GW to 49 GW); maximum annual (peak) load is assumed to grow nearly 120 per cent 
(from ~37 GW to 80 GW). These figures account for assumed demand side management efforts 
through 2030, per the IRP. In addition, it is assumed that minimum annual load is 40 per cent of 
peak load in 2040, based on load behaviour in New South Wales, Australia, which is thought to 
provide a developed-country comparator in a similar climate. 

Using the assumed changes to minimum, mean, and maximum load, the 2010–11 time series is 
scaled to 2040. The differing rates of change in mean and maximum load imply that higher-load 
hours will grow disproportionately faster than lower-load hours, but the exact nature of the 
changes to the load profile is unclear. In the absence of such information, the scaling process is 
necessarily arbitrary.  

The technique used here assumes that higher-load hours increase exponentially faster than lower-
load hours. Let r be a vector containing the ratio of hourly load to the minimum annual load over 
2010–11. Let R be an analogous vector of ratios used to scale load in 2011–12 to 2040. Based on 
the assumed changes described above, R must range from 1 to 2.5 with a mean value of 1.53. I 
assume that R = S(rx), where x>1 and S is a function that linearly scales rx between 1 and 2.5. The 
value of x is determined numerically such that the mean of R is 1.53, which occurs at x = 2.18. 

Figure 11 shows the resulting distribution of load, by season and time of day, for 2040. The solid 
black line shows mean load; the grey violin plots show the relative probability distribution across 
two years of hourly data. The highest-load hours most often occur during winter evenings (MJJ) 
between 5PM and 8PM. There are two additional periods of relatively high load: winter mornings 
(MJJ 8AM to noon) and spring evenings (ASO 6PM to 8PM). 
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Figure 11: Assumed 2040 system-wide load profile and distribution, by season 

 
Source: Authors’ creation (based on data provided by Eskom). 

6 Power system scenarios and modelling 

Sections 6 and 7 use the data developed above to simulate the economic and environmental 
performance of three different WSP deployment patterns in the year 2040. An Eskom planning 
scenario is used as the basis for this exercise. 

This section describes the ‘default’ Eskom scenario and the WSP spatial deployment pattern it 
implies. Then, a simple power system model is introduced that simulates hourly system 
performance with respect to reliability, carbon dioxide (CO2) emissions, and overall cost, taking 
into account the spatiotemporal variability inherent to WSP resources. Finally, two variations on 
the original scenario are developed (Variation A and Variation B) by optimizing the location and 
quantity of WSP technologies to minimize the cost of CO2 abatement. Simulation results for all 
three scenarios are presented in Section 7. 

6.1 Default Green scenario 

Eskom has created a number of power system planning scenarios for WSP expansion through the 
year 2040, guided by the IRP (Eskom 2012). One of those scenarios, called the ‘Green’ scenario, 
envisions total WSP capacity in excess of 46.5 GW in 2040. 
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The Eskom Green scenario is particularly aggressive with respect to WSP deployment, which 
makes it especially interesting from the standpoint of integration and reliability. The approved IRP 
currently envisions 18.8 GW of WSP by 2030. The Green scenario increases that figure appreciably 
by 2040, largely due to the exclusion of new nuclear capacity. In contrast, the IRP relies on the 
addition of 9.6 GW of nuclear capacity by 2030 to meet electricity demand and emissions targets. 
Table 1 gives the installed capacity and level of penetration, in 2040, for each generating technology 
in the default Green scenario. 

Table 1: Installed capacity by 2040 in default Green scenario 

Generating technology MW installed 

by 2040 

Penetration (% of 

total) 

Coal 41,071 36.4

Open-cycle gas turbine (OCGT) 7,780 6.9

Combined-cycle gas turbine (CCGT) 7,170 6.3

Pumped storage (hydro) 2,912 2.6

Nuclear 1,800 1.6

Imports (hydro) 4,759 4.2

Biomass 890 0.8

Wind 23,000 20.4

PV 12,600 11.1

CSP 10,960 9.7

Total 112,942 100%

Source: Authors’ creation (based on data from the IRP [Eskom 2012]). 

Given the high penetration of WSP in the Green scenario, the performance of the power system 
is strongly affected by the assumed location of WSP facilities. Eskom has identified geographic 
areas (zones) where it deems future deployment of different WSP technologies to be likely. The 
Green scenario specifies how much wind and CSP capacity to allocate to each of the relevant 
zones is needed. Geographic zones are also identified for PV deployment, but no quantities are 
assigned to specific zones. Consequently, I assume that the PV fleet is distributed evenly across 
the identified zones. 

The technology zones identified by Eskom are relatively large. Within a given zone, I assume that 
projects are ultimately sited in locales (grid cells) with the highest long-term capacity factors. This 
is a reasonable assumption given the desire of project developers to maximize long-term electricity 
output. Figure 12 (following section) displays the resulting WSP spatial deployment pattern implied 
by Eskom’s Green scenario for 2040, given the aforementioned assumptions.  

6.2 Simple power system model 

Given assumed quantities of conventional generation and a pattern of spatial deployment for WSP 
technologies, it is possible to simulate system performance in terms of CO2 emissions, reliability, 
and cost. To do this, a simple, single-node power system model is created. It assumes there are no 
transmission or distribution constraints or costs. 
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Given a particular WSP deployment pattern, the model uses data described in Section 4 to calculate 
the aggregate (i.e. fleet-wide) hourly WSP power generation for a 10-year period. In conjunction 
with the load time series described in Section 5 and the conventional generation quantities in Table 
1, the loss of load probability (LOLP) is calculated for each hour. The LOLP gives the likelihood 
that electricity supply will be insufficient to meet demand, taking into account the probability of 
unexpected outages among conventional generators.6 Summing the LOLP over 10 years of hourly 
data gives the loss of load expectation (LOLE), usually expressed as hours per year, which is a 
standard measure of system reliability. Although alternative reliability metrics are possible (e.g. 
unserved energy), LOLE is convenient and easily benchmarked.7 

After making an initial LOLE calculation, the model then determines how to adjust the Green 
scenario’s OCGT capacity to achieve the specified LOLE. A LOLE target value of 0.1 days per 
year is used, as this is commonly cited as a typical level of planning reliability in developed-country 
power systems (NERC 2012). To achieve the target LOLE, the model may add or subtract OCGT 
capacity from the Green scenario initial capacity of 7.78 GW. 

The model assumes that pumped storage and imported hydroelectric capacity is available when it 
is likely to be needed most. This is accomplished by allocating pumped storage and imported 
hydroelectricity generation to hours where the net load (load minus WSP output) is highest, subject 
to the constraint that the long-term (net) capacity factors for pumped storage and hydroelectric 
imports must be 0.2 and 0.4, respectively, as specified in the IRP. 

The model also imposes a ‘turndown rate’ on coal and nuclear generators, reflecting the need to 
maintain a minimum level of thermal output and preventing them from dropping below an hourly 
capacity factor of 0.35 (Ihle and Owens 2004). If WSP, pumped storage, and hydroelectric imports 
are so large in a given hour that coal and nuclear generators would be forced below the turndown 
rate, the former are curtailed accordingly.8 

The 10-year, hourly economic and environmental performance of the system is calculated, 
assuming that generating technologies are prioritized by their marginal running cost—that is, 
within a given hour, the system utilizes WSP generation first and only resorts to relatively expensive 
gas generation when absolutely necessary to meet demand. Hourly operating costs, annualized 
capital costs, and hourly CO2 emissions are also calculated, using technology and fuel cost 
assumptions and CO2 emissions factors taken from the IRP. 

Finally, the average cost of CO2 abatement is estimated. Abatement cost calculations require a 
baseline or counter-factual scenario without WSP. Consequently, the model is first optimized to 
determine the minimum annual cost of meeting electricity demand in the absence of WSP—that 
is, a low-cost, high-pollution scenario. The optimization uses the Green scenario’s default installed 
capacity values (Table 1), but replaces WSP with the least-cost combination of coal, OCGT, and 

                                                 
6 The LOLP calculation treats WSP generation as a negative load, following the convention outlined by Keane et al. 
(2011). The cumulative outage probability table (COPT) for conventional generators is constructed using the recursive 
convolution algorithm described in Makarov et al. (2010). 

7 The concept of power system ‘reliability’ has a number of components (e.g. frequency regulation), but the focus here 
is on what is usually (and more accurately) referred to as ‘system adequacy’. I use ‘reliability’ throughout given its 
greater familiarity with a general audience, but its use is meant to be synonymous with ‘adequacy’. 

8 Coal and nuclear plant thermal efficiency is assumed constant. In practice, efficiency declines at lower capacity 
factors. The inclusion of ramp rate constraints was considered, but the typical, hour-to-hour variability observed 
within the WSP fleet was such that the constraint was deemed minimal and consequently excluded. Ramp rates are 
likely to be important if higher-resolution WSP resource data are used and/or spatial transmission constraints are 
imposed. 
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CCGT. The overall cost and CO2 emissions resulting from this least-cost system are used as the 
comparator when calculating the cost of CO2 abatement associated with the introduction of WSP. 

6.3 Variations on the Green scenario 

In addition to the default Green scenario described above, two variations are constructed. The 
first, called Variation A, is identical to the Green scenario, except that the location of WSP capacity 
in 2040 is optimized to find the spatial arrangement that minimizes the cost of CO2 abatement. 
The second, called Variation B, also allows the quantity of WSP capacity to be optimized, subject to 
the constraint that a total of 46.5 GW of WSP capacity be installed in 2040. 

The task of optimizing the location of WSP resources presents a non-trivial optimization problem. 
The number of potential combinations of quantities, technologies, and locations is immense. 
Traditionally, power system planning models have relied on linear programming (LP) techniques 
(e.g. Short et al. 2011). While efficient and robust, LP models require problems to be specified in 
a particular form, preventing, for example, direct computation of LOLP/LOLE reliability metrics 
using long-term hourly time series. 

The alternative approach used here employs an evolutionary search or ‘genetic’ algorithm (GA) to 
‘evolve’ an initial solution set (or ‘population’) towards the global minimum, using rules for gene 
mutation and crossover borrowed from evolutionary biology. Specifically, I use the GENOUD 
algorithm as implemented in the ‘Rgenoud’ package for the R programming language (Mebane 
and Sekhon 2011). This technique allows the objective function and parameter constraints to be 
specified in any manner. While GAs are not definite, they are quite effective at identifying the 
global optimum, provided the initial population is sufficiently large (Lobo and Lima 2007). 

The parameters to be optimized include the quantity of WSP capacity to be deployed in a given 
grid cell for a given technology. Section 4 presents spatiotemporal generating efficiency data for a 
relatively large number of modelled WSP sites and interpolates that data across all grid cells in the 
study area via universal kriging. It is possible to condense this data without losing information, in 
an effort to reduce the number of parameters needed to obtain an optimized deployment pattern. 

The SKATER clustering algorithm is again used to cluster modelled WSP sites, grouping those 
with similar diurnal generating efficiency patterns across seasons. Within each cluster, all feasible 
grid cells are ranked from highest long-term capacity factor to lowest. It is assumed that, within a 
given cluster, the sites with the highest long-term capacity factors are given preference. 

For each cluster, a function is constructed that describes how a given quantity of capacity is to be 
allocated across individual grid cells. These functions are used within the model objective function 
to quickly compute the 10-year, hourly electricity output time series for a given capacity in a given 
cluster. This clustering approach is used to reduce the number of model parameters to a more 
manageable number for the purposes of optimization, while retaining much of the spatiotemporal 
information in the underlying time series database. 

The simple power system model is optimized using the GENOUD algorithm to identify particular 
patterns of WSP deployment that minimize the cost of CO2 abatement. Variation A results from 
optimizing only the location of WSP facilities; the total installed capacity of each WSP technology is 
the same as in the default Green scenario (Table 1). Variation B results from optimizing both the 
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location and quantity of individual WSP technologies, subject to the constraint that a total of 46.5 
GW of WSP capacity be installed.9 

One could alternatively minimize (or maximize) an economic or environmental metric other than 
the cost of CO2 abatement; for example, minimizing total emissions or cost. However, the 
abatement cost captures the inherent trade-off between economic and environmental objectives, 
thereby providing a more comprehensive metric for ranking deployment options. As shown in the 
following section, optimizing with respect to abatement cost allows for the identification of 
deployment strategies that are not cost- or emissions-minimizing but likely to be preferable from 
a policy perspective. 

7 Simulation results 

Table 2 summarizes simulation results for the default Green scenario as well as Variation A and 
Variation B. The Green scenario exhibits an average cost of CO2 abatement in 2040 of US$26.5 
per tCO2 (total carbon dioxide; 2010 dollars). Variation A and variation B, which optimize the 
location and quantity of WSP technologies so as to minimize abatement costs, result in 
commensurate values of US$22.8 and US$15.7 respectively.  

Table 2 also identifies other differences between scenarios. Note that the default Green scenario 
and Variation A, by design, contain the same installed capacity for wind, PV, and CSP. Yet, the 
average capacity factor across these technologies differs considerably between scenarios, with 
Variation A siting facilities such that the WSP fleet generates about 6 per cent more electricity than 
in the Green scenario. 

Variation B results in a very different balance of WSP technologies. The abatement cost-
minimizing solution returned by the GA contains nearly 39 GW of PV capacity, compared to just 
2.8 GW of wind and 4.9 GW of CSP capacity. This dramatic shift towards PV drives down the 
annualized cost of operating the power system (due to the projected low capital cost of PV in 
2040) but results in slightly higher CO2 emissions. However, since the cost savings are relatively 
greater than the emissions increase, the cost of CO2 abatement declines. 

As noted in Section 6, the model internally adjusts the amount of OCGT capacity to ensure a long-
term LOLE value of 0.1 days per year, based on 10 years of hourly simulation and the particular 
WSP deployment pattern. The dramatic shift to PV in Variation B is only possible because of 
significant changes to the quantity of gas generating capacity. Section 4 shows that PV has little 
ability to contribute electricity during high-load evening periods. Variation B responds by building 
out OCGT capacity, as evidenced by an increase in the reserve margin. With respect to the cost of 
CO2 abatement, the economic and environmental cost imposed by the building and using of gas 
capacity, given the IRP’s assumptions, do not outweigh the benefits of increased PV capacity. 

Figures 12, 13, and 14 display the WSP spatial deployment patterns returned for the default Green 
scenario, Variation A, and Variation B, respectively. These are the deployment patterns underlying 
the results in Table 2. 

                                                 
9 The Variation A and Variation B models contain ~90 parameters (clusters) each. Lobo and Lima (2007) cite analysis 
by Pelikan et al. (2003) that asserts GA population size should be between approximately p1.05 and p2.1, where p is the 
number of parameters. With this in mind, a population size of 8,000 was selected and the two optimizations run 
simultaneously, each using a single compute core. Each run required ~700,000 objective function evaluations to settle 
on a solution, requiring ~78 core-hours on a 2.5 GHz Intel Core i5 processor. 
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The default Green scenario deployment pattern (Figure 12) exhibits relatively wide-ranging solar 
power dispersion, reflecting Eskom’s assumptions regarding areas likely to see WSP development. 
By comparison, Variation A and Variation B consolidate PV and CSP capacity in the Northern 
Cape, utilizing the highest-efficiency locales. Variation B (which is dominated by PV) disperses PV 
capacity throughout the Northern Cape and, to a much smaller degree, the Western Cape and 
North West Province. Variation A is not significantly different than the default Green scenario is 
in terms of wind power siting, though the former does shift capacity away from the coastal 
Northern Cape and into the Western and Eastern Cape where the wind resource is deemed more 
desirable. 

Table 2: Summary of simulation results 

 Green scenario Variation A Variation B 

Average abatement cost in 2040 (2010 US$ per tCO2) US$26.5 US$22.8 US$15.7 

Average annual emissions in 2040 (MtCO2) 236 229 241 

Average annualized system cost in 2040 (2010 billion US$) 26.3 26.1 25.1 

Average annual WSP electricity delivered in 2040 (TWh) 138.8 147.1 132.2 

Reserve margin (%) 38.5 36.9 44.2 

Onshore wind average capacity factor (%) 32.6 33.5 35.9 

PV average capacity factor (%) 29.0 32.0 30.0 

CSP (6hr) average capacity factor (%) 42.9 46.2 46.2 

Onshore wind capacity in 2040 (GW) 23.0 23.0 2.8 

PV capacity in 2040 (GW) 12.6 12.6 38.8 

CSP (6hr) capacity in 2040 (GW) 11.0 11.0 4.9 

Source: Authors’ creation. 
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Figure 12: Assumed WSP spatial deployment pattern in 2040 for default Green scenario 

Source: Authors’ creation. 

Figure 13: WSP spatial deployment pattern in 2040 for Variation A scenario 

 

Source: Authors’ creation. 



 23

Figure 14: WSP spatial deployment pattern in 2040 for Variation B scenario 

 

Source: Authors’ creation. 

Figures 15, 16, and 17 show the mean diurnal generation profile, by season, for the default Green 
scenario, Variation A, and Variation B, respectively. Each figure shows how, on average, the 
various technologies in the power system combine to meet the system-wide load. The data 
underlying these figures include 10 years of hourly simulation results. In all cases, the winter 
evening peak period exhibits increased use of OCGT and CCGT generators to meet the increased 
demand. 

It is difficult for the eye to discern differences between the mean diurnal generation profiles for 
the default Green scenario and Variation A. Both exhibit broadly similar patterns in the magnitude 
and timing of power generation among different technologies. However, even the relatively small 
differences resulting from improved WSP siting lead to significant differences in the average cost 
of CO2 abatement (Variation A being 14 per cent lower, as noted in Table 2). 

Variation B (Figure 17), on the other hand, is clearly different. The large quantity of PV capacity 
results in a dramatic daytime decline in coal power output (replaced by PV power). Coal power 
then ramps up quickly to help address higher-load evening periods in which the contribution from 
WSP is quite small. Figure 17 also clearly shows the increased prominence of gas generation in 
meeting high-load periods, as evidence by the higher reserve margin noted in Table 2. 
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Figure 15: Mean diurnal generation profile in 2040 for default Green scenario, by season 

 

Source: Authors’ creation. 

Figure 16: Mean diurnal generation profile in 2040 for Variation A scenario by season 

 
Source: Authors’ creation. 
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Figure 17: Mean diurnal generation profile in 2040 for Variation B scenario, by season 

 

Source: Authors’ creation. 

8 Discussion 

As noted in Section 1, an important objective of this research is to demonstrate the potential for 
new data and modelling techniques to capture important spatiotemporal dynamics in power 
systems with high penetration of WSP. The results presented in Section 7 suggest that the use of 
such techniques to explicitly optimize the location and quantity of WSP technologies could 
potentially identify deployment strategies that significantly reduce the cost of CO2 abatement, 
while ensuring reliability. 

The model presented here is an admittedly simplistic representation of South Africa’s power 
system. Most notably, it ignores transmission issues that could play an important role in guiding 
cost-effective deployment of WSP. And since the model is a simple, single-node model, load 
variation and balancing across space are effectively ignored. 

However, one of the advantages of the technique introduced here is its flexibility. The GA 
optimization approach allows for model specification to take on any form (even sub-optimization 
routines), and the WSP spatial clustering process provides a defensible way to scale the problem 
size for available computing resources. Moreover, GA optimization is typically ‘embarrassingly 
parallel’, offering the option to utilize cloud computing for very large simulations. 

A primary task for future research is to incorporate transmission costs and constraints into the 
modelling framework. This will require data and institutional support from South Africa’s grid 
operator, and the creation of transmission infrastructure cost assumptions, as the IRP does not 
currently address this subject. It is not clear if inclusion of transmission costs and constraints would 
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necessarily alter the optimal mix or location of technologies, but it would increase the cost of CO2 
abatement. 

Further work is also needed to simulate system expansion over time (e.g. 2015 through 2040 with 
WSP deployment or emissions targets for each year) and uncertainty in critical cost assumptions 
(e.g. Monte Carlo analysis over a range of future technology and fuel costs). None of these 
advances pose overwhelming technical challenges—they can be introduced to the existing model 
given its flexibility—but they will require buy-in by stakeholders in South Africa’s power sector. 
In short, the barriers are likely more political than technical. 

The need to embed future planning models (whether this one or others) in a probabilistic 
framework is made clear by the dramatic shift towards PV in Variation B. This result is driven, in 
large part, by the IRP’s assumption of declining PV capital costs over time. But the pace and 
magnitude of cost reductions is, in fact, uncertain. This uncertainty is especially crucial for 
transmission infrastructure, which must be routed and built well in advance of the WSP facilities 
it will eventually serve. 

The overarching goal of probabilistic planning models must be to identify deployment strategies 
that are spatially robust to future uncertainty; for example, identification of transmission corridors 
that allow for potential utilization of multiple regions and WSP technologies, depending on the 
evolution of costs over time. This further increases the complexity of the planning problem, but 
such knowledge could reduce long-term financial risk for all involved and accelerate infrastructure 
planning and permitting. The spatial implications of uncertainty is an unexplored but clearly 
important area for future research. 

The immediate question, however, is not whether (or even how) the results of this study would 
change with the inclusion of transmission issues; additional technical, political, or socioeconomic 
constraints; or different cost assumptions. Changing model inputs would undoubtedly change the 
output. The more important question is whether the development of high-resolution WSP data 
and more sophisticated modelling techniques is worthwhile. Could such efforts lead to appreciably 
better outcomes in terms of power system cost, pollution, and reliability?  

Using the results of this study, a back-of-the-envelope estimate is that more advanced modelling 
efforts could save South Africa on the order of US$100 million in 2040 compared to current 
planning approaches (2010 US dollars; present value at 8 per cent real discount rate). This figure 
is based on comparison of the default Green scenario (conventional planning) and the optimized 
Variation A.10 It seems likely, given the large, multi-decade investments South Africa must make, 
that simultaneous optimization of WSP siting, transmission build-out, and other considerations 
would increase the returns. It is reasonable to expect that the greater the WSP penetration and 
more complex the system under study, the larger the returns to high-resolution, spatiotemporal 
modelling. 

The value of analyses that explicitly incorporate long-term spatiotemporal data will become more 
pronounced as the quality and resolution of WSP time series improve. This is particularly true of 
wind power, where small-scale orography may provide individual wind farm sites that exhibit 
unusual and/or useful temporal patterns. This requires high-resolution numerical weather 
modelling, as currently being carried out by the WASA project. That data, along with future 

                                                 
10 The optimized deployment pattern in Variation A reduces the cost of CO2 abatement by US$3.70 per tCO2. A 
rough estimate of the annual savings is made by multiplying this number by the 228.7 MtCO2 annual emissions in 
Variation A. Discounted from 2040 to the present at 8 per cent results in estimated annual savings of ~US$100 million. 
If Variation B is instead used as the comparator, the estimated savings increase to ~US$300 million. 
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characterization of South Africa’s offshore wind resources, could provide even greater opportunity 
for spatial optimization techniques to combine sites and technologies in particularly advantageous 
deployment patterns. 

South Africa is well-positioned to take advantage of policy guidance provided by more advanced 
modelling efforts. The Renewable Energy Independent Power Producer (IPP) Procurement 
Programme has already successfully completed two rounds of bid solicitation, approving ~2.5 GW 
of WSP capacity to date.11 In conjunction with the Council for Scientific and Industrial Research’s 
(CSIR) ongoing Strategic Environmental Assessment (SEA) for wind and solar PV rollout,12 
which is tasked with identifying geographic areas best suited for deployment, there are clear policy 
levers by which modelling results can be used to facilitate WSP project selection and siting on the 
ground. 

With respect to longer-term planning, both the DOE (via the IRP) and Eskom (via its ongoing 
Strategic 2040 Transmission Network Study) are central to the prioritization of generating 
technologies and build-out of new transmission infrastructure. These decisions will be heavily 
dependent upon the expected cost and technical performance of alternative WSP deployment 
strategies. Selection of preferred strategies, from among the many possible, is likely prone to 
suboptimal outcomes in the absence of comprehensive (ideally probabilistic), spatiotemporal 
modelling. Given the long life-span of transmission infrastructure, the spatiotemporal variability 
of WSP resources, and the dependence of project developers on grid access, well-informed co-
ordination and planning is absolutely critical to securing clean, affordable, and reliable electricity 
for South Africa. 

South Africa is not the only country facing these issues. Over 135 countries have adopted national 
renewable energy targets. For larger countries, cost-effective exploitation of domestic WSP resources 
remains the immediate task. For smaller countries (and larger countries within multinational power 
grids), there may be excellent and unexplored opportunities to collectively harness regional WSP 
resources, reaping economic and environmental benefits while strengthening political ties with 
neighbours. Development of an integrated deployment and transmission plan to harness WSP 
resources across southern Africa, for example, could dramatically alter the economics of renewable 
energy in the region. Such ‘game-changing’ research requires detailed knowledge of the 
spatiotemporal properties of renewable resources over large areas. In general, the returns to 
spatiotemporal modelling will increase with the size of the geographic region under study. 

As countries seek to transition to power systems dependent upon intermittent WSP, the tools used 
to understand and plan such systems must evolve accordingly. This study demonstrates that high-
resolution, spatiotemporal data and associated modelling can identify WSP deployment strategies 
that offer significant savings over time. This does not necessarily require multi-year projects with 
large research teams and budgets. With sufficient support from in-country stakeholders, low-cost, 
open-source data and software like those used here are capable of capturing the most critical 
spatiotemporal dynamics. Research in this vein can help countries intelligently harness their unique 
WSP resources to address climate change, air pollution, and energy security in a cost-effective and 
reliable manner. 

 
 

                                                 
11 See: http://www.ipprenewables.co.za/ 
12 See: http://www.csir.co.za/nationalwindsolarsea/ 
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