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Abstract 

Climate change assessments often inadequately address uncertainty when estimating damages. 
Using a dynamic economy-wide model of Bangladesh, we estimate and decompose damages 
from historical climate variability and future anthropogenic climate change. Our stochastic 
simulation approach avoids biases caused by non-linear damage functions and fixed occurrences 
of extreme events in historical data. Using ten climate projections, we find that future 
anthropogenic climate change damages until 2050 are, on average, one-fifth of those from 
historical climate variability. Climate change also alters the temporal distribution of damages 
and slows Bangladesh’s long- run shift (adaptation) into dry (winter) season rice production. 
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1 Introduction 

Climate change complicates economic development in low-income countries. At the very least, it 
heightens the uncertainty under which governments must design national strategies (Hassan 
2010). Three sources of climate uncertainty can be identified. First, while the distribution of 
historical climate is known, it is difficult to forecast annual weather patterns, particularly 
extreme weather events. Second, the global economy’s long-term trajectory is unknown, 
including its structural transformation, population growth, and mitigation policies. Accordingly, 
future levels of greenhouse gas (GHG) emissions are uncertain. Finally, even with a known 
emissions trajectory, it is unclear which general circulation model (GCM) best reflects the earth-
atmosphere relationship. Ideally, impact and vulnerability assessments should reflect these 
uncertainties and distinguish between historical climate variability and future anthropogenic 
climate change (Füssel and Klein 2006).  

The literature examining the economic impacts of climate change has expanded rapidly (see 
Füssel and Klein 2006; Tol 2009). Recent studies typically combine biophysical models with 
global, country, or agricultural sector models (see, for example, Ahmed et al. 2011; Arndt et al. 
2011; Block et al. 2008). While these studies have become more detailed, they are often limited 
in their treatment of uncertainty. For example, some studies rely on only a few climate 
projections, thus making them sensitive to the uncertainty of global climate modeling (Calzadilla 
et al. 2009). Other studies avoid issues of historical variability, particularly extreme events, by 
focusing on incremental climate changes only, sometimes using static two-period analysis 
(Hertel et al. 2010). Finally, most studies impose mean changes from climate projections onto 
historical climate series thereby retaining historical variability (Arndt et al. 2011). However, 
climate damage functions are often non-linear, and so using a single historical weather sequence 
as a baseline makes the measured impacts of future climate change sensitive to the timing and 
severity of extreme weather events in the historical data. Thus, while recent impact assessments 
are more comprehensive and account for a wider range of impact channels, many still do not 
fully address the issue of climate uncertainty.  

We develop a recursive dynamic computable general equilibrium (DCGE) model of Bangladesh. 
Our dynamic economy-wide framework captures non-linear responses to extreme weather 
events, and spillover effects across sectors and sub-national regions. We generate a stochastic 
baseline scenario using Monte Carlo simulations of future weather sequences drawn from the 
historical climate distribution. This permits the random occurrence of extreme events. Based on 
crop and river basin modeling results, the DCGE model decomposes the impacts of historical 
climate variability and anthropogenic climate change. The latter is based on ten combinations of 
GCM and emissions scenarios. The next section briefly describes the biophysical models from 
Yu et al. (2010), whose results inform our economic analysis. Section 3 describes the DCGE 
model and climate simulations. Section 4 presents the simulation results, and the final section 
summarizes our findings and identifies areas for further research.  
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2 Climate change and biophysical impacts  

2.1 Climate risk in Bangladesh  

Bangladesh is one of the most vulnerable countries to climate shocks. Most of the population, 
especially the poor, live in rural areas and depend on agriculture for their livelihoods. High 
population density means that rural inhabitants are mostly smallholder farmers (less than 0.5 
acres) or landless farm workers. Agriculture and downstream processing generate a quarter of 
gross domestic product (GDP). Rice is the main staple food and accounts for half of crop and 
agro-processing GDP (Dorosh and Thurlow 2008). Agriculture is also crucial for urban 
inhabitants given their dependence on domestically-produced foods. Climate shocks affecting 
agriculture therefore have implications for economic growth, poverty, and food security.  

Bangladesh has a long history of climate variability. Figure 1 shows historical economic growth 
rates. Although total GDP has grown every year since 1975, agricultural growth has been erratic. 
This is partly because Bangladesh lies at the end of three major river basins and is subject to 
flooding during the wet season (June–October) and water scarcity during the winter season 
(November–May). Although monsoonal floods usually benefit agriculture, the infrequent 
occurrence of major flooding has devastating implications for rural livelihoods and infrastructure 
(see del Ninno et al. 2001).1 Agricultural GDP growth has therefore fluctuated, especially during 
major flood years. Moreover, much of the country lies at very low altitude and is exposed to 
cyclones, storm surges, and the possibility of rising sea levels. Anthropogenic climate change 
may exacerbate existing climatic risks. Below we summarize the biophysical modeling from Yu 
et al. (2010) that forms the basis for our economic assessment.  

Figure 1: Agricultural and total GDP growth trends, 1975–2009 

 
Notes: Black dots represent years where historical climate data indicate major flood occurrences during the crop 
season (e.g., 1975 calendar year is crop season 1974/75).  
Source: Adapted from Yu et al. (2010) using World Bank (2011). 
                                                

1 Normal floods cover a third of the country for several days or weeks during July/August. In contrast, major or 
severe floods, like that of 1998, can last until mid-September in some areas. Severe flooding occurs when all 
three of Bangladesh’s river basins experience peak flows at the same time (del Ninno et al. 2001: 3). 
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2.2 Climate change scenarios 

Climate change projections vary across GCMs and across the emissions scenarios defined by the 
Intergovernmental Panel on Climate Change’s (IPCC) special report on emissions 
scenarios(SRES) (see Arnell et al. 2010). Yu et al. (2010) examine monthly temperature and 
precipitation projections for Bangladesh using 16 GCMs and three emissions scenarios. Gridded 
GCM projections were weighted to a national average using the share of each grid within 
national borders. A ‘delta approach’ was then used to estimate climate changes using historical 
baseline climate time series for 1970–99 and mean projected climate changes for the 2030s 
(2020–49) and 2050s (2040–69). More specifically, the baseline temperature and precipitation 
levels (and hence variability) are based on observed historical data. To derive future climate 
change series, we perturb each annual observation in the historical series by the mean 
temperature and precipitation deviations predicted by the global climate models (from their own 
modeled baseline).2 

All GCM/SRES pairings predict rising temperatures, with median warming of 1.1 °C and 1.6 °C 
for the 2030s and 2050s, respectively. Although there is less consistency for the precipitation 
projections, median results suggest annual precipitation will increase 4percent above the 
historical baseline by the 2050s. All of the additional precipitation is projected to occur in the 
wet season, with drier-than-baseline conditions occurring in the dry (winter) season. Both 
outcomes have implications for annual flooding and crop yields. 

A sub-sample of the GCM/SRES projections was used for the biophysical analysis. GCMs were 
selected so that they (1) adequately capture the three river basins and the dynamics of monsoonal 
flooding; (2) reflect the full distribution of modeled projections; and (3) have the necessary 
resolution for the biophysical models. Two emissions scenarios were selected to reflect two 
possible future states of the global economy. The A2 scenario projects high levels of global 
emissions due to fast population growth and only limited adoption of more energy-efficient 
technology. In contrast, the B1 scenario projects lower (but still rising) emissions due to more 
modest population growth and more widespread diffusion of improved technologies. Ultimately, 
five GCMs and two emissions scenarios were selected.3 

2.3 River basin flooding and rising sea levels 

Yu et al. (2010) use a trans-boundary river basin model to estimate water flows into Bangladesh. 
Inflows were validated and passed down to a national hydrologic model in order to predict daily 
water levels and discharges. Spatial elevation models interpolated flood surfaces taking account 
of flood protection infrastructure. The extent, depth and duration of floods were estimated for the 
historical baseline and for the 2030s and 2050s projections.  
                                                

2 GCMs are unlikely to accurately forecast weather conditions for a particular year. The delta approach avoids 
relying on annual predictions and assumes that GCMs are better predictors of changing climate trends. This 
means that the changes in climate variance predicted by the GCMs are not used directly under the delta 
approach.  

3 SRES: A2 and B1. GCMs: gfdl2.1, miroc3.2_medres, mpi_echam5, ncar_ccsm3, and ukmo_hadcm3. 
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Results indicate that, on average, trans-boundary inflows during the wet season increase in the 
ten GCM/SRES pairings, albeit with wide variation in monthly monsoonal discharges. The 
average increase in discharge by the 2050s also varies across river basins—from 3.6 percent in 
Meghna (July) to 17.4 percent in Brahmaputra (May). The national hydrologic model predicts an 
expansion of flooded areas for most GCM/SRES pairings. The average increase is larger in the 
A2 scenarios (13 percent) than in the B1 scenarios (7 percent). Floods are also expected to arrive 
earlier and recede later in the year. Finally, predicted increases in peak flows, while not always 
statistically significant, suggest that major floods may become more frequent.  

Sea level rise reduces land availability in low-lying areas. IWM and CEGIS (2007) estimate that, 
at the national level, Bangladesh stands to lose 1.5 and 2.5 percent of agricultural land if sea 
levels rise by 15 and 27 centimeters, respectively. These losses are concentrated in coastal areas 
(e.g., 17.8 percent of land submerged in the southern Khulna region in the 27 centimeter 
scenario).  

2.4 Agricultural production changes 

Yu et al. (2010) estimate agricultural yields using the crop environment resource synthesis rice 
and wheat models. Separate models were employed for the main rice crops: aus (mainly non-
irrigated rice), aman (monsoon season rice, historically cultivated with traditional varieties), and 
boro (winter season irrigated rice).4 The models were calibrated to the conditions in 16 agro-
climatic regions, including weather and soil characteristics and irrigation and input use. Modeled 
deviations from maximum potential yields can be caused by CO2 enrichment, changes in 
temperature and precipitation,and water-logging and flooding damages. The timing of climate 
changes within the growing season is also accounted for. Yield deviations were estimated for the 
historical climate series and for the 2030s and 2050s projections. Table 1 reports median 
production-weighted yield deviations caused by climate change.  

Table 1: Median changes in national crop production under alternative climate change scenarios (%) 

 Climate change scenarios 
 A2 and B1 A2 only B1 only 
 2030s 2050s 2030s 2050s 2030s 2050s 

Aus -0.27 -1.52 -1.11 -3.51 -0.14 0.01 
Aman -0.37 -0.62 -0.42 -1.49 -0.37 -0.40 
Boro -3.06 -4.74 -1.68 -5.54 -3.76 -3.54 
Wheat 2.05 3.44 2.23 3.74 1.33 3.03 

Source: Crop modeling results from Yu et al. (2010: 54). 

 

 

                                                

4 In 2005, boro accounted for 39.2 percent of rice area cultivated and 55.0 percent of production; aman accounted 
for 50.9 percent of rice area and 39.0 percent of production. Aus accounted for the remainder. 
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The onset and duration of annual flooding largely determines agricultural performance in 
Bangladesh. Rice cultivated in the aman (monsoon) season, can be severely damaged by 
excessive flood waters during the early growing season, and aman production has fallen sharply 
in years of major floods when flood waters have failed to recede in time. The projected increase 
in precipitation and flooding caused by climate change therefore explains most of the decline in 
aman yields reported in Table 1. In contrast, boro rice, cultivated in the drier, winter season, is 
most sensitive to the availability of irrigation water. Boro yields fall as a result of climate change 
due to, on average, declining precipitation and water availability during the winter season. 
Declining rice yields caused by higher temperatures, precipitation and flooding, however, are 
partly offset by higher CO2 levels in the atmosphere and CO2 enrichment explains the higher 
wheat yields caused by climate change.5 Overall, rice and wheat yield deviations are typically 
larger by the 2050s and for the A2 scenarios. 

In summary, climate change increases Bangladesh’s exposure to climate risks. We focus on the 
agricultural impact channel given the sector’s vulnerability to historical and anthropogenic 
climate changes, and its importance for national income and welfare. Biophysical modeling 
results indicate worsening flooding and declining rice yields in much of the country as a result of 
climate change. There is, however, wide variation in outcomes across GCM/SRES pairings.  

3 Stochastic economy-wide modeling framework 

3.1 Climate simulations and uncertainty 

We conduct three sets of simulations that allow us to address the issues of uncertainties 
mentioned earlier, and to distinguish between historical climate variability and future 
anthropogenic climate changes during 2005–50. 

Optimal climate: In this first scenario we assume that Bangladesh is unaffected by either natural 
or anthropogenic climate changes (i.e., every year has the same ‘good’ weather conditions). Crop 
yields, productivity, and factor supplies therefore increase smoothly at long-term potential 
growth rates. This simulation provides a hypothetical ‘no climate’ scenario against which we can 
compare climate-affected simulations.  

Historical variability: We now introduce historical climate variability. The model is run over 45 
years (i.e., 2005–50) and for each simulation year we randomly draw a year from the historical 
climate data (i.e., 1970–99). We impose on the DCGE model the predicted yield deviations from 
a maximum potential yield for that historical year using the sub-national crop modeling results. 
If a major flood year is drawn from the historical series, then additional impacts are imposed (see 
below).6 Together these random selections produce a 45-year weather sequence based on the 
historical climate distribution. We construct 50 of these 45-year sequences for our Monte Carlo 
                                                

5 The inclusion of CO2 enrichment suggests that our results may be overly optimistic (see Cassman et al. 2010).  

6 Major flood years in the 1970-99 historical climate data include the following seasons: 1970/71, 1974/75, 
1984/85, 1987/88, 1988/89, and 1998/99.  



 

6 

 

analysis. The difference between the optimal scenario and an average of the 
historicalvariabilityscenarios is the estimated impact of historical climate variability. It should be 
noted that the historical climate series may include some anthropogenic climate change. 
However, the effects are likely to have been fairly modest during 1970–99, and so when making 
random draws from the historical series, we assume that the historical data does not contain 
changes in trend weather conditions caused by anthropogenic climate change (i.e., the weather 
conditions experienced in 1970 and 1999 were equally likely to reoccur in our base year, 2005). 

Climate change: Perturbing historical climate data with the mean temperature and precipitation 
deviations-from-baseline (‘deltas’) from the GCM/SRES projections generates two 30-year 
climate series (i.e., for the 2030s and 2050s) (see explanation in Section 2). To construct the 
historical variability scenarios described above, we randomly drew observations from the 
historical climate series to produce a single 45-year weather sequence. Each annual weather 
condition corresponds to an estimated crop yield deviation. To incorporate future anthropogenic 
climate change, we maintain the same randomly-drawn annual sequences, now use the 
information on yield deviations contained in both the historical and projected climate series. As 
before, we initially draw yield deviations based on the historical climate series. However, as the 
DCGE model runs forward over 45 years, we smoothly transition to using the estimated yield 
impacts corresponding to the two projected climate series. For example, 30 years separate the 
DCGE model’s 2005 base year and the mid-point of the 2030s dataset. Therefore in 2010, which 
is year five in our simulations, we take 25/30 of the yield deviation estimated using the historical 
series and 5/30 of yield deviation estimated using the 2030s series. The corresponding weights 
for year six are 24/30 and 6/30, until by 2035 when the entire yield deviation is drawn from the 
2030s series. We similarly transition from the 2030s to the 2050s series during the second 
portion of the simulation period (i.e., 2035–50). We construct 50 45-year sequences for each 
GCM/SRES pairing, and compare the average result to that of the average historical variability 
scenario to determine the expected impact of climate change (i.e., the historical scenario is our 
stochastic ‘baseline’). This approach allows us to capture the altering of climate trends due to 
anthropogenic climate change, while retaining the same underlying climate variability in both the 
historical variability and climate change scenarios. 

3.2 DCGE model specification 

Below we specify the economy-wide model described in Diao and Thurlow (forthcoming). 
Consumers and producers in the model are treated as individual economic agents. Under a Stone-
Geary function, consumers maximize utility subject to a budget constraint. This generates a 
linear expenditure system of demand functions 

௜ܲ ∙ ௜௝ܥ = ௜ܲ ∙ ௜௝ߛ + ௜௝ߚ ∙ ቆሺ1 − ௥ݏ − (௥݀ݐ ∙ ௝ܻ −෍ ௜ܲᇱ ∙ ௜ᇱ௝௜ᇱߛ ቇ 
(1) 

where C is consumption of good i in region j, γ is a minimum subsistence level, β is the marginal 
budget share, P is the market price of each good, Y is total household income, and s and td are 
savings and direct tax rates, respectively. Similarly, producers maximize profits subject to given 
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input and output prices. Assuming constant returns to scale, a constant elasticity of substitution 
(CES) function determines production 

ܺ௜௝ = ௜௝ߙ ∙ ቀߜ௜௝ ∙ ௜௝ିఘ೔ೕܮ + ൫1 − ௜௝൯ߜ ∙ ௜௝ିఘ೔ೕቁିଵܭ ఘ೔ೕ⁄
 

(2) 

where X is output quantity of sector i, α is a shift parameter reflecting total factor productivity 
(TFP), L and K are labor and capital demand, and δ is a share parameter. The elasticity of factor 
substitution is a transformation of ρ (i.e., σ=1/(1+ρ)). Maximizing profits subject to Equation (2) 
and rearranging the first order condition gives a system of factor demand equations ܮ௜௝ܭ௜௝ = ቆܴ௜௝ܹ௝ ∙ 1 − ௜௝ߜ௜௝ߜ ቇଵ ൫ଵାఘ೔ೕ൯⁄

 (3) 

where W is the area-specific labor wage, and R is the sector/area-specific capital rental rate. For 
ease of exposition, we do not show intermediate demand in the equations. The producer price PX 
is the sum of factor payments per unit of output ܲܺ௜௝ ∙ ܺ௜௝ = ௝ܹ ∙ ௜௝ܮ + ܴ௜௝ ∙ ௜௝ܭ  

(4) 

Products are traded in national markets, implying a single market-clearing price P for each good. 
Inadequate internal trade data necessitates this assumption. Output from each area is combined 
into a composite national good Q using a CES function 

ܳ௜ = ߶௜ ∙ ቆ෍ ௜௝ߣ ∙ ܺ௜௝ିఛ೔௝ ቇିଵ ఛ೔⁄
 (5) 

Equation 5 permits imperfect substitution between goods from different regions. Relative 
producer prices are determined by the following first order condition, derived from minimizing 
the composite supply price of each good: 

ܲܺ௜௝ = ௜ܲ ∙ ሺ1 − (௜݅ݐ ∙ ܳ௜ ∙ ቆ෍ ௜௝ᇱߣ ∙ ܺ௜௝ᇱିఛ೔௝ᇱ ቇିଵ ∙ ௜௝ߣ ∙ ܺ௜௝ିఛ೔ିଵ 
(6) 

where ti is the indirect tax rate applied to domestic sales.  

For ease of exposition, the variables and equations governing international trade are not shown. 
However, our model permits two-way trade by assuming imperfect substitution between 
domestic and foreign goods (see Armington 1969). More specifically, a constant elasticity of 
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transformation function determines exports, and a CES function determines imports.7 World 
prices are fixed under the small country assumption. The current account balance is held constant 
(in foreign currency units) by allowing the real exchange rate to adjust (i.e., a price index of 
tradable to non-tradable goods). 

Assuming that all factors in an area are owned by households in that area, total income Y is 

௝ܻ = ෍ ൫ ௝ܹ ∙ ௜௝ܮ + ܴ௜௝ ∙ ௜௝൯௜ܭ + ℎ௝ 
(7) 

where h is transfer payments from the government (e.g., social grants).  

The government is a separate agent with revenues and expenditures, but without any behavioral 
functions. Total revenue is the summation of direct and indirect taxes, as shown on the left-hand 
side of the following equation ෍ ݐ ௝݀ ∙ ௝ܻ௝ +෍ ௜݅ݐ ∙ ௜ܲ ∙ ܳ௜௜ =෍ ௜ܲ ∙ ܣ ∙ ݍ ௜݃௜ +෍ ℎ௝௝ +  ܤ

(8) 

Revenues are used to purchase goods and make transfers (i.e., recurrent spending) and to save 
(i.e., finance public capital investment). This is shown on the right-hand side of Equation (8). 
Our macro-economic closure rule assumes that public consumption spending is equal to base-
year quantities qg multiplied by an exogenous adjustment factor A. The fiscal balance B adjusts 
to ensure total revenues equal total expenditures in equilibrium. 

There is also no behavioral function determining investment demand for each good. We assume 
a savings-driven closure, i.e., total investment adjusts to match the level of savings in the 
economy. As shown below, a national savings pool finances investment 

෍ ௝ݏ ∙ ௝ܻ௝ + ܤ =෍ ௜ܲ ∙ ܫ ∙ ௜௜݅ݍ  
(9) 

where qi is base-year investment quantities multiplied by an endogenous adjustment factor I. 

We assume that labor is fully employed. As such, total labor supply LS in each region is fixed 
and, in equilibrium, must equal the sum of all sector labor demands 

                                                

7 Foreign trade decisions take place in national markets (i.e., export and import relative prices are compared to the 
price of the national composite good Q).  
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ܮ ௝ܵ =෍ ௜௝௜ܮ  

(10) 

Unlike labor, which is mobile across sectors, capital is both sector- and region-specific. Capital 
demand K in each sector and region are fixed (see Equation 3). The rental rate R adjusts so that 
the sector/region-specific profit rate equates capital demand and supply in each sector. 

Finally, product market equilibrium requires that the composite supply of each good Q equals 
total private and public consumption and investment demand ܳ௜ =෍ ௜௝௝ܥ + ܣ ∙ ݍ ௜݃ + ܫ ∙  ௜݅ݍ

(11) 

Market prices P adjust to maintain equilibrium. Together, the above 11 equations simultaneously 
solve for the values of 11 endogenous variables (i.e., C, X, L, R, Q, PX, Y, B, I, W, and P). The 
national consumer price index is selected as a numéraire. 

3.3 Recursive dynamics 

Our model is recursive dynamic; i.e., it consists of distinct within- and between-period 
components. The above equations specify the within-period component. Between-periods, 
certain exogenous variables are updated based on either externally-determined trends or previous 
period results. Exogenous trends include labor supply growth rates (i.e., LS in Equation 10) and 
rates of technical change (i.e., α in Equation 2). 

Although not shown in Equations 1–11, each variable has a time subscript associated with it. 
Sectorlevel capital accumulation rates are determined endogenously based on investment levels 
from the previous period. The quantity of new capital N depends on the total value of investment 
and the capital price PK (i.e., a composite price index derived from investment demand shares 
qi). New capital is allocated across sectors/regions after applying a national depreciation rate υ 
and according to a capital allocation factor SK (0 < ܭܵ < 1). 

௧ܰ = ෍ ሺ ௜ܲ௧ ∙ ௧ܫ ∙ ௜)௜݅ݍ ∙  ଵିܭܲ
(12) 

௜௝௧ାଵܭ = ௜௝௧ܭ ∙ ሺ1 − ߭௜) + ௜௝௧ܭܵ ∙ ௧ܰ 
(13) 

SK specifies how much investment is directed towards each sector/region and so sums to one. 
Following Dervis et al. (1982), SK is defined as follows 
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௜௝௧ܭܵ = ܵ ௜ܲ௝௧ + ߮ ∙ ܵ ௜ܲ௝௧ ∙ ൬ܴ௜௝௧ − ௧ܴܣ௧ܴܣ ൰ 
(14) 

where SP is a sector/region’s current share in aggregate profits, R is a sector/region’s profit rate, 
and AR is the average profit rate. New capital is allocated in proportion to each sector/region’s 
share in aggregate capital income, adjusted by its profit rate relative to the average profit rate. 
Sectors/regions with above-average profit rates receive a greater share of investible funds than 
their share in aggregate profits. The term φ is an investment mobility parameter.8 This allocation 
procedure is known as a ‘putty-clay’ specification, since new capital is mobile, but installed 
capital is not.  

3.4 Climate impact channels 

Three climate impact channels are captured in the DCGE model. The first is changes in crop 
productivity. As shown below, TFP (α) in each sector/region grows at a long-term rate γ ߙ௜௝௧ = ௜௝௧ିଵߙ ∙ ൫1 + ௜௝൯ߛ ∙ ሺ߱௜௥௧ ∙  (௜௥௧ߥ

(15) 

The crop models estimate annual crop yield deviations from maximum potential yields. The first 
parameter ω varies around a base year value of one depending on the randomly selected year 
from the climate data series (0 < ߱ < ∞).9 The second parameter ν is caused by water-logging 
(0 < ߥ ≤ 1). These yield adjustment factors compound each other, and when their product is less 
than one, yields fall below long-term trends. Agricultural land cannot be reallocated between 
crops within each season, although consumers can substitute between aus, aman, and boro rice 
crops.10 Yields return to trend levels if weather conditions permit (i.e., no lasting effects). 

The second channel is the additional economic losses incurred during extreme weather events. 
Although not shown in the above equations, the model separates labor and agricultural land 
within each region. Equation 16governs the expansion of regional land supply NS, whichequals 
the sum of sector land demands within each period ܰ ௝ܵ௧ = ௝௧ߝ ∙ ௝௧ߣ ∙ ܰ ௝ܵ௧ିଵ ∙ ൫1 + ߮௜௝൯ 

(16) 

                                                

8 Following Dervis et al. (1982), we set the value of φ at two. 

9 All yield deviations from the crop models are less than 1 (i.e., less than the maximum potential yield). However, 
the 2005 base-year of the DCGE model was a less-than-optimal year and so the yield adjustment factor ω may 
exceed one.  

10 Almost all rice produced and consumed in Bangladesh is some type of coarse, non-aromatic rice with little 
quality dinstinction across seasons/varieties. We therefore model a single milled rice commodity market. 
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Four lasting impacts occur when a major flood year is drawn from the climate data series (over 
and above temporary yield deviations). First, agricultural land expansion is normally set at the 
long-term rate φ, but ceases during major flood years (i.e., ߮ = 0 in affected regions). It returns 
to trend in subsequent years.Second, historical data indicates that the harvested land area of aus 
and aman rice falls during major flood years due to prolonged water inundation. Accordingly, the 
parameter ε, which is normally equal to one, declines based on the land losses observed in 
historical production data during major flood years. Third, long-term improvements in 
agricultural productivitystop during flood years (i.e., ߛ = 0 in affected regions—see Equation 
15). Finally, infrastructure is damaged during major flood years. The annual capital depreciation 
rate υ in Equation (13)is increased from 0.05 to 0.075 in flood years and to 0.10 in severe flood 
years (i.e., 1988/89 and 1998/98). This is assumed to only affect agro-processing and trade and 
transport services, given that they are more likely to be rural-based. 

The third impact channel is the rising sea level caused by climate change. Section 2 discussed the 
estimated land losses for 15 and 27 centimeter scenarios. We assume these correspond to the 
2030s and 2050s periods, respectively. Land losses are permanently imposed on the DCGE 
model. We gradually reduceλ (0 ≤ ߣ ≤ 1) from its base value of one, to levels that reflect the 
predicted land area reductionsin coastal regions from IWM and CEGIS (2007). Sea level rises 
are only imposed in the climate change scenarios, although the impacts are assumed to be the 
same for all GCM/SRES pairings. 

In summary, the model captures three climate-related impact channels: (1) climate-induced yield 
deviations from the crop models; (2) reduced land and capital supplies and factor productivity 
during major flood years; and (3) declining agricultural land availability due to rising sea levels. 
The model also simulates increased frequency of major flooding due to climate change. The 
return periods for the 1988 and 1998 floods are reduced by one-third. More specifically, the 1988 
and 1998 floods were 1-in-33 and 1-in-50 years events, respectively (based on river discharges). 
The frequency of these floods in the sample used to randomly generate future weather sequences 
is increased to 1-in-25 and 1-in-33, respectively. This only occurs in the climate change 
scenarios.  

3.5 Model calibration 

The model is calibrated to a detailed 2005 social accounting matrix (SAM) (Dorosh and Thurlow 
2008). The SAM identifies 36 sectors in the 16 agro-climate regions (17 sectors in agriculture, 
14 in industry, and 5 in services). Base-year production quantities and yields are calibrated to the 
Agricultural Sample Survey (BBS 2005a). Substitution elasticities for the production and trade 
functions are based on cross-country estimates from Dimaranan (2006).  

Using the household income and expenditure survey (BBS 2005b), labor markets in each region 
are segmented by education groups: no schooling; primary schooling; secondary schooling, and 
tertiary educated. Farm land and agricultural sectors are divided by region and, within each 
region, into marginal (<0.5 hectares), small-scale (0.5-2.5 hectares), and large-scale farms (>2.5 
hectares). Households within each region are divided into farm and non-farm groups, and farm 
households are divided into landowners and landless farm workers (according to the household 
head’s occupation). Landowning farm households are separated into marginal, small-, and large-
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scale farmers. Non-farm households are split into four groups depending on the education level 
of the household head. The DCGE model is therefore a very detailed representation of the 
Bangladesh economy, particularly of the country’s agricultural sector. 

4 Simulation results 

4.1 Optimal scenario 

The optimal scenario provides a growth path for Bangladesh that excludes crop yield losses and 
flooding damages caused by less-than-optimal weather conditions. ‘Optimal’ is defined as the 
highest crop yield achieved in each region within the 30-year historical period (i.e. 1970–99), as 
estimated by the crop models. Economic growth in the DCGE model is driven by long-run rates 
of factor accumulation and technical change. Assuming a constant dependency ratio, the growth 
in population and labor supply gradually decelerates from 2.0 per year in 2005 to 0.5 percent per 
year in 2050. The supply of better-educated labor expands faster than for uneducated labor, 
reflecting expected improvements in labor quality. The expansion of agricultural land decelerates 
from 1.0 per year in 2005 to 0.5 percent per year in 2050. This is slower than rural population 
growth and reflects rising land scarcity. Capital accumulation is endogenously determined in the 
model, and capital-output ratios are selected to track long-term capital stock growth. We assume 
that non-agricultural TFP grows faster (at 2.5 percent per year) than agricultural TFP (2.0 
percent).  

Total GDP in the optimal scenario grows at an average 4.7 percent per year during 2005–50. 
Slower agricultural productivity growth causes agriculture’s share of GDP to fall from 20.7 
percent in 2005 to 12.1 percent in 2050. Since agriculture is the main climate impact channel in 
our model, its declining contribution to GDP has implications for climate’s damage estimates. 
Negative impacts from climate change on agricultural production will be partly offset by the 
sector’s declining importance in the broader economy. The optimal scenario is itself subject to 
uncertainty. However, the scenario’s assumptions do not greatly influence our conclusions since 
it is merely used for counter-factual analysis. Overall, it provides a reasonable trajectory for 
Bangladesh, including expected structural transformation. We now impose the effects of 
historical climate variability and future climate changes. 

4.2 Historical climate variability scenarios 

The historical scenario includes the yield deviations estimated by the crop and flooding models 
using historical climate data for 1970–99. Historical variability is defined as the ratio of the 
estimated annual yield to the maximum yield for the historical period. We also impose additional 
land and productivity losses during major flood years (see Section 3). We simulate 50 45-year 
weather sequences drawn randomly from historical data and compare the average outcome to the 
optimal scenario.  

The DCGE model includes some autonomous adaptation. At the producer level, productive 
resources can be endogenously reallocated away from the worst-affected sectors (e.g., workers’ 
can migrate to other farm and non-farm activities). Reducing agriculture’s resources may benefit 
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non-agricultural sectors, although this may be offset by inter-industry linkages (i.e., declining 
availability of intermediate inputs). We adopt the ‘dumb farmer’ approach when deciding crop 
land allocations (i.e., farmers see long-term climate trends, but do not anticipate weather 
conditions within a given year) (see Füsseland Klein 2006). At the national level, Bangladesh 
adapts to regional production shocks by sourcing products from less-affected regions, albeit at 
higher prices, or increasing foreign imports, with implications for the country’s balance of 
payments and real exchange rate. Given these endogenous adaptation responses, the results of 
the DCGE model are not a simple summation of the production changes estimated by the crop 
models. 

Figure 2 shows the estimated losses in national per capita rice production. In the optimal 
scenario, production grows at three percent per year during 2005–50. In physical terms, domestic 
production rises from 25.2 to 96.3 million metric tons between 2005 and 2050 (i.e., from 182.8 
to 286.9 kilograms per capita). Historical climate variability introduces variation in inter-annual 
rice production, although, on average, it reduces rice production below optimal‘non-climate’ 
levels. Annual production growth falls to 2.7 percent in the average historical sequence, implying 
that national production reaches only 83.9 million tons by 2050. This is 12.3 million tons below 
optimal levels (i.e., 36.8 kilograms less per person per year).  

Figure 2: Per capita rice production in the historical variability scenarios, 2005–50 

 

 
Notes: ‘Historical sequences’ are 50 randomly-drawn weather simulations (not individually labeled); ‘Historical 
average’ is the mean of the historical sequences; ‘Worst case scenario’ is the historical sequence producing the least 
rice over the simulation period. 

Source: DCGE model results. 

The absolute negative impact of historical climate variability on rice production rises over time 
due to the lasting effects of yield losses and flooding damages on economic growth (i.e., slower 
capital accumulation and lower long-term productivity). Averaged over the entire simulation 
period, historical climate variability reduces national rice production by 8.8 percent. We define 
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the ‘worst case’ scenario as the randomly drawn weather sequence resulting in the lowest 
cumulative production throughout the period 2005–50. In the worst-case scenario, average rice 
production losses are larger at 14.3 percent.  

Yield deviations vary across the three rice varieties (see Table 1). Figure 3 indicates that most of 
the decline in national rice production in the historical scenario is caused by aus and aman. The 
average annual growth rates of aus and aman rice production are 0.6 percentage points below the 
optimal scenario. Although boro rice production falls in certain weather sequences, its average 
production level remains virtually unchanged from optimal levels. This is consistent with 
Bangladesh’s historical agricultural strategy to promote production of dry (winter) season boro 
rice. In fact, the expansion of boro rice production during the 1990s partly explains why the 
major 1998 floods (i.e., 1-in-100 year event) had a smaller impact on national rice production 
and agricultural GDP than the less-severe 1988 floods (del Ninno et al. 2001: 39).11 

Figure 3: Production results for the historical variability scenarios, 2005–50 

 

Source: DCGE model results. 

Rice and wheat account for almost half of crop GDP. Together with sector-wide flood damages, 
the reduction in these crops’ yields causes agricultural GDP to fall below the optimal scenario 
(see Figure 3). Moreover, agriculture’s large contribution to the overall economy means that total 
GDP is also noticeably affected. This national impact is compounded by inter-industry linkages, 
in which the supply of agricultural goods to downstream sectors declines along with agriculture’s 
demand for non-agricultural inputs (e.g., fertilizer and transport services). Moreover, falling rural 
incomes reduce demand for final non-agricultural foods. Finally, flooding directly damages 
capital stocks in certain non-agricultural sectors. Thus, despite our focus on agricultural impact 
channels, our results reveal large economy-wide damages from historical climate variability. 

                                                

11 The optimal baseline scenario does not simulate any future switch from aus/aman to boro rice. This would lower 
the future national production losses caused by historical climate variability. However, our focus is to compare 
historical variability and future climate change scenarios, and these are both referenced to the same baseline. 
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On average, total GDP’s annual growth rate is 0.2 percentage points below the optimal scenario 
during 2005–50. Small reductions in growth rates can lead to large absolute losses when 
compounded over 45 years. Part 1 of Table 2 shows that the cumulative difference in total GDP 
between the optimal and historical scenarios amounts to US$597.1 billion (measured in 2005 
prices). Applying a 5 percent discount rate, total losses are US$120.7 billion or an average 
US$2.7 billion per year. By the 2040s, total GDP is 4.7 percent below what would have been 
achieved without the adverse effects of historical climate variability.  

Table 2:Economic losses in the historical and climate change scenarios 

 Historical 
variability 

Climate change  
 A2 and 

B1 
A2 only B1 only 

Cumulative loss1(US$ bil.) 594.1 128.6 146.8 110.3 
Discounted cumulative loss2 

(US$ bil.) 
120.7 25.7 29.2 22.3 

Share of GDP,2040s (%)3 4.71 1.04 1.18 0.90 

Notes: 1Change in total GDP measured in 2005 prices; 2discounted at 5 percent per year;3decline in GDP as a 
share of optimal or historical GDP for the historical or climate change scenarios, respectively.  
Source: DCGE model results. Adapted from Yu et al. (2010: 70, 78). 

 

4.3 Future climate change scenarios 

Building on the historical variability scenario, we now include the additional impacts of 
anthropogenic climate change. As described in Section 3, we randomly draw 50 45-year weather 
sequences by smoothly transitioning from yield deviations based on the historical climate series 
to yield deviations based on the 2030s and 2050s series. The latter include both historical 
variability and future climate change. Therefore, to isolate the effects of climate change we 
compare the results of the climate change scenarios to the average historical scenarios. To 
account for the uncertainties of global economy and climate system modeling, we estimate 
climate change impacts for the ten GCM/SRES pairings (see Section 2). 

Figure 4 shows the estimated losses in national per capita rice production. The lighter curves are 
average outcomes for each GCM/SRES pairing. These are based on the same 50 weather 
sequences underlying the average historical scenario. As such, differences between the 
GCM/SRES curves are solely due to global economy and climate model uncertainty. The 
average climate change scenario is the arithmetic mean outcome of all ten GCM/SRES pairings. 
Although we attempted to reflect the full distribution of IPCC projections when selecting 
GCM/SRES pairings, we cannot be certain that the IPCC projections themselves reflect the full 
distribution of possible climate changes. Moreover, we assume that GCM/SRES pairings can be 
assigned the same weight. Recognizing these shortcomings, we define the difference between the 
climate change and historical scenarios as the economic impact of anthropogenic climate change. 
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Figure 4: Per capita rice production for the climate change scenarios, 2005–50 

 
 

Notes: ‘Historical average’ is the mean of 50 weather simulations randomly drawn from historical data; GCM/SRES 
pairing’ is the mean of 50 weather simulations drawn from each of the ten projected climate change series (not 
individually labeled); ‘Climate change average’ is the mean of the ten GCM/SRES pairings. 

Source: DCGE model results. 

 

Figure 5: Production results for the climate change scenarios, 2005–50 

 

Source: DCGE model results. 

National rice production declines under all GCM/SRES pairings. The average annual growth rate 
for 2005–50 falls from 2.7 percent in the historical scenario to 2.5 percent per year in the 
averageclimate change scenario. Slower production growth (i.e., by 0.16 percentage points) 
lowers national rice production in 2050 by 5.9 million tons (i.e., 15.5 kilogram per capita). 
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Figure 5 indicates that this fall in production is driven by declines in all three rice varieties, 
although the largest average decline is for boro rice. The average growth rate for boro production 
falls by 0.2 percentage points. Since major flooding does not occur during the winter season, this 
reduction in boro production is driven by falling crop yields (see Table 1). While aus and aman 
production also declines, the losses are smaller than for boro. This is despite the two wet season 
varieties being exposed to more frequent major flooding.  

Figure 5 also reports declines in average GDP growth. On average, agricultural GDP’s annual 
growth rate is 0.1 percentage points lower as a result of climate change. Again, agriculture’s 
large contribution to the overall economy and its linkages to non-agriculture mean that total GDP 
also declines in the climate changescenarios. Part 2 of Table 2 reports the economic losses 
caused by climate change over the 45-year simulation period. The discounted cumulative loss in 
value added is US$25.7 billion for 2005–50, or an average US$570 million per year (measured 
in 2005 prices). By the 2040s, total GDP is about one percent smaller than it would have been in 
the absence of anthropogenic climate change. This is roughly a fifth of the damages caused by 
historical variability. 

Uncertainty over future GHG emissions is reflected in the difference between changes in total 
GDP for the average A2 and B1 scenarios. Discounted economic losses are higher for the 
average A2 scenario (US$22.3 billion) than for the B1 scenario (US$22.3 billion). Moreover, 
incorporating GCM uncertainty broadens the range of outcomes even further (i.e., from US$18.4 
billion under miroc3.2/B1 to US$46.1 billion for gdfl2.1/A2). This variation in damage estimates 
underscores the importance of considering a range of climate change projections in impact and 
vulnerability assessments. However, even in the worst climate change scenario, damages are less 
than half those caused by historical climate variability. It is therefore also important to situate the 
damages from anthropogenic climate change within the historical context. 

5 Conclusions 

We have developed a recursive dynamic CGE model in order to estimate the economic impacts 
of future anthropogenic climate changes and to distinguish them from historical climate 
variability. Our findings indicate that, on average, historical climate variability will reduce 
national rice production in Bangladesh by 8.8 percent over 2005–50, primarily as a result of 
flooding damages to wet season rice varieties. The importance of agriculture in the broader 
economy means that both agricultural and total GDP decline. The loss in total GDP from 
historical climate variability amounts to US$2.5 billion per year (measured in 2005 prices and 
with a 5 percent annual discount rate). In contrast, the GDP damages caused by anthropogenic 
climate change are five times smaller. Climate change damages will, however, increase with time 
and may become more pronounced beyond our simulation period (i.e., post-2050s).  

Anthropogenic climate change also alters the seasonal distribution of climate damages in 
Bangladesh. Unlike historical variability, climate change reduces dry (winter) season (irrigated) 
boro production by more than wet season aus and aman. This remains true even when we 
increase the frequency of major monsoonal flooding. Therefore, not only will climate change 
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heighten food insecurity in Bangladesh, but it will tend to slow the long-run shift in importance 
of wet season relative to dry (winter) season rice cultivation.  

Methodologically, our stochastic derivation of a baseline scenario approximates future weather 
patterns based on the historical climate distribution. This approach retains the non-linear effects 
of extreme weather events, but allows these to appear randomly in the baseline. This is an 
advance on previous studies that define baseline scenarios as simple repetitions of historical 
climate series. Using a single sequence of historically-observed weather outcomes as a baseline 
biases damage estimates when damage response functions are non-linear. For example, with non-
linear responses and climate change becoming more pronounced with time, the economic impact 
of climate change is larger when extreme events occur later in the baseline. This makes it 
difficult to determine how much of the estimated damages are due to the choice of baseline and 
how much are due to projected climate changes. Decomposing historical variability and future 
climate changes therefore requires a stochastic approach.  

Our analysis can be extended. First, we focus on agriculture, but more comprehensive studies 
capture a range of impact channels, such as urban and coastal infrastructure, hydropower and 
human health (see, for example, Arndt et al. 2011). Second, while the ‘dumb farmer’ assumption 
is commonly used in economic modeling, it should be replaced by more flexible 
endogenous/autonomous adaptation responses (see Füssel and Klein 2006). Third, our 
stochastically-generated baseline did not allow for the possibility of serial correlation when 
drawing annual weather events from the historical distribution. Fourth, the delta approach to 
incorporating climate change projections did not consider the changes in variance predicted by 
the GCMs. While ours is the approach usually adopted in country impact assessments, the 
importance of extreme weather events means that further investigation into changing weather 
variance due to climate change is warranted. Finally, our economic model was of Bangladesh 
only and permitted food imports at fixed world prices. Global models, which simultaneously 
estimate climate damages in all countries, can predict changes in world prices and trade flows. 
However, global models forfeit country level detail, including the seasonal and spatial 
production patterns that underpin our findings for Bangladesh.  
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