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Abstract: I discuss the applicability of the recentered influence function (RIF) to the analysis of 
poverty differentials between distributions (regression-based decomposition into composition and 
income structure effects). I show that the predominant approach in the empirical literature 
estimates the relationship between individual poverty functions of additive measures, particularly 
the head-count ratio, and household attributes. Given that the recentered influence function of 
these measures is also their poverty function, this approach is simply a specific case of the one-
stage recentered influence function decomposition, using non-linear probability models. However, 
the use of recentered influence function provides a more general approach that better accounts 
for individual contributions to poverty for non-additive poverty measures (such as that of Sen and 
its extensions) as well. At the same time, the use of reweighting in a first stage allows to avoid 
imposing any functional form on the relationship between poverty and characteristics at the 
aggregate level. 
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1 Introduction 

In recent decades, the empirical economic literature has witnessed a growing interest in the use of 
regression-based decomposition analyses to understand the drivers of distributional changes over 
time, as well as the distributive differences between population groups, countries, or periods. The 
main purpose of these analyses is to decompose a differential in a statistic of interest (for example, 
the mean) between two distributions (e.g., male and female, White and non-White, two years) in 
composition and structural effects (aggregate decomposition). The first effect reflects the part of 
the differential that is due to the fact that both populations diverge in terms of their composition 
by relevant characteristics, while the second one reflects the differential that remains conditional 
on both populations having the same distribution of those characteristics. These two aggregate 
effects can be further decomposed into the contribution of each explanatory factor or set of factors 
(detailed decomposition), highlighting the relevance of each attribute to explain the differential 
(through each effect). 

The approach became popular in labour economics after the seminal contributions of Blinder 
(1973) and Oaxaca (1973) to the analysis of wage discrimination using linear regression. The main 
idea was to estimate the average wage difference between African Americans and Whites or 
between men and women that remains after controlling for differences in the distribution of 
relevant attributes between the two groups of workers (for example, in level of education or 
experience). The wage gap associated with different returns to worker attributes (that is, not 
explained by characteristics) can be interpreted as wage discrimination if the main sources of 
productivity-based differences have been adequately controlled. However, the presence of 
endogeneity issues or unobservable key attributes (e.g., quality of education, non-cognitive skills, 
etc.) can pose a challenge in that interpretation. As Oaxaca (1973: 708) points out, the method has 
deep roots: ‘This methodological technique is found in other studies as well and may take the form 
of regression analysis or standardization analysis’. Indeed, there was, for example, a long tradition 
of comparing standardized rates between groups in social research. Following this line of the 
literature, Kitagawa (1955) discussed a non-parametric method to study the differences between 
the total rates of two groups considering a small number of categorical explanatory factors, a 
refined and revised version of a technique that had been used since 1948 at the University of 
Chicago.1 

The subsequent literature that followed these initial approaches has tried to refine these techniques 
to address issues that affect the interpretation of the decomposition, such as self-selection in the 
sampled group, endogeneity or unobserved heterogeneity, among others. This regression-based 
decomposition approach was later extended to study the differences between two distributions in 
specific quantiles, such as p25, p50 (the median), or p75, for example, or in aggregate inequality 
measures such as the variance or the Gini index, or to the entire distribution (for example, density 
or cumulative distribution). 

Fortin et al. (2011) provide a detailed technical discussion of the main different approaches and 
their econometric properties, highlighting the advantages of combining the estimation of a 
counterfactual distribution using propensity score reweighting (DiNardo et al. 1996) to obtain the 
aggregate decomposition, and the approach based on the statistical concept known as recentered 
influence function (RIF) (Firpo et al. 2007, 2009, 2018) to obtain the detailed decomposition under 

 

1 A rate is the average of a dummy variable (where 1 indicates group membership, e.g., male or white). A non-
parametric method is similar to an OLS with categorical variables including all possible interactions. 
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simplifying assumptions (linear relationship between RIF and explanatory factors). This approach 
can be seen as a generalization of the conventional Blinder-Oaxaca framework, which would be a 
particular case when the statistic is the mean. Although this literature falls within the causal 
inference analysis in non-randomized treatments using observational data, the conditions for 
causal identification are rarely met, and therefore these studies generally refer to statistical 
associations. But even if they are primarily interpreted as observational studies, they have proven 
particularly useful in gaining a better understanding of distributional phenomena across many 
dimensions between groups and over time. 

The purpose of this paper is to provide an overview of the implications of adapting the RIF 
approach (with or without reweighting) to the measurement of poverty, which has great potential 
even if it has rarely been used as such in the literature. As discussed here, to a large extent, the 
regression-based decompositions of poverty that can be found in the literature can be seen as 
specific cases of this approach. 

Next, I first describe the regression-based decomposition used in the context of poverty. After 
that, I will analyse the RIF approach applied to poverty measures and explore the relationship 
between the RIF and individual poverty functions. The final section concludes. 

2 Regression-based decomposition of poverty measures 

The case of poverty, especially the more popular measure known as the poverty rate or headcount 
ratio, has not been an exception to the trend of using regression-based decomposition methods in 
its analyses. Topics such as changes in poverty over time or the poverty gap between two ethnic 
or racial groups were commonly addressed using this type of approach.2 Since instead of using 
individual earnings, these analyses are based on household income or consumption, the possible 
connection with interpretations in terms of discrimination tends to be weaker. In general, if a 
population group is discriminated, this will normally have an effect through both effects if its 
members have limited access to the accumulation of human or physical capital, to jobs with better 
employment opportunities, family planning, etc., as well as if they receive lower remuneration to 
their endowments. In this context, the identification of different sources for the differentials 
gained more relevance to help understand the role of differences in composition by education, 
type of household, employment status, occupation, or other sociodemographic factors. 
Alternatively, these differences are attributed rather to different levels of conditional poverty 
between groups with similar characteristics. 

As mentioned above, a direct application of conventional approaches to differences in means can 
produce a decomposition of two poverty rates using a non-parametric approach or a linear 
probability model (LPM) if the variable of interest is a dummy variable with 1 reflecting that 
someone is poor and 0 is not poor. However, the empirical literature has been more inclined to 
use binary choice models (probit/logit) to estimate the relationship between poverty status and 
explanatory factors.3 

Therefore, empirical poverty analyses using regression-based decompositions became more 
popular as the approach was extended to deal with non-linear probability models. Specially to 
obtain the detailed effects, which are simple in the linear case but there is no unique or unanimously 

 

2 E.g., see review of earliest studies in Gradín (2009). 
3 There is still controversy about the use of LPM for binary dependent variables (e.g., Breen et al. 2018). 
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accepted solution in the case of the non-linear models. Among these approaches, the linearized 
method proposed by Even and Macpherson (1990, 1993) stands out to obtain an aggregate 
decomposition and the detailed decomposition of the composition effect. This was later 
formalized and generalized by Yun (2004) to include the detailed structure effect as well.4 I will 
focus on this approach due to its popularity and direct connection to RIF, as explained later. The 
most common practice was to estimate models in a reduced form, rather than structural models, 
given the complexity of modelling all the economic and sociodemographic factors that affect 
household poverty.  

3 Poverty measures and poverty functions 

Amartya Sen has well established that the study of poverty requires two stages, namely, 
identification of the poor, and the quantification of aggregate poverty (Sen 1976). The 
identification of the poor in a unidimensional setting is usually done by considering poor people 
with income or consumption below a specific poverty line 𝑧𝑧, which can generally be obtained as 
an absolute measure of needs (i.e., the cost of purchasing a basic bundle of food and non-food 
items) or a percentage (e.g., 50 or 60) of a baseline income (e.g., the median). In the second step, 
for a given poverty line, overall poverty is aggregated using poverty indices, that can generally be 
written as a functional of the cumulative distribution of income 𝑦𝑦 (e.g., household net income per 
capita): 𝑃𝑃(𝐹𝐹𝑦𝑦; 𝑧𝑧). In general, we can think of 𝑦𝑦 here as the censored income distribution where the 
incomes of non-poor people are assigned a value 𝑧𝑧. This is the result of the generally accepted 
‘focus axiom’, implying that a change in the income of the non-poor does not affect overall 
poverty, provided they do not fall below the poverty line. For simplicity, in what follows, the 
notation of poverty measures will ignore 𝑧𝑧, which is taken as given. 

In the context of regression-based analyses, it is also important to note that most common poverty 
measures can also be represented as the average across the population of individual poverty 
functions: 𝑃𝑃�𝐹𝐹𝑦𝑦� = 𝐸𝐸 �𝑝𝑝�𝐹𝐹𝑦𝑦��, with 𝑝𝑝�𝐹𝐹𝑦𝑦� being the poverty function, that takes positive values for 
the poor and a value of zero for the non-poor.  

When the individual poverty function for any individual income 𝑦𝑦 depends only on how far the 
income is from the poverty line (and do not depend on other people’s incomes), overall poverty 
measures are additively decomposable: 𝑃𝑃�𝐹𝐹𝑦𝑦� = 𝐸𝐸(𝑝𝑝(𝑦𝑦)). This is the case of the most popular 
family of indices used in the empirical literature, proposed by Foster, Green and Thorbecke (1984) 
(FGT), where the poverty function is a transformation of the normalized distance between each 
income and the poverty line: 𝑝𝑝𝛼𝛼(𝑦𝑦) = �𝑧𝑧−𝑦𝑦

𝑧𝑧
�
𝛼𝛼

. The family includes as particular cases well-known 
indices such as the head-count ratio, the average normalized poverty gap, and poverty severity 
(average squared normalized poverty gap) for 𝛼𝛼 = 0,1,2. There are other additive indices, such as 
the first known distributive-sensitive poverty measure, proposed by Watts (1969), where the 
poverty function can be interpreted as the loss of welfare due to poverty: 𝑝𝑝(𝑦𝑦) = 𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑙𝑙𝑙𝑙𝑙𝑙. 

In other cases, however, individual poverty functions may also depend on other people’s incomes. 
This is the case of the two measures proposed by Sen (1976) and the various extensions that can 

 

4 There are other strategies to address non-linearity: e.g., sequential decomposition (Gomulka and Stern 1990; Fairlie 
1999, 2005) or evaluating differences in characteristics at marginal effects (Schwiebert 2015). 
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be found in the literature,5 where individual poverty functions weight each normalized poverty gap 
by a measure of people’s rank within the poor or within the entire population. In cases like these, 
poverty measures do not verify additive decomposability, or even a weaker property of subgroup 
consistency (according to which overall poverty is increasing in poverty in any group or individual, 
ceteris paribus).6 Although there is a rationale for not verifying this property, some people consider 
that this feature makes these indices less attractive for empirical analyses. 

4 Aggregate decomposition of a difference in poverty measures 

The aggregate decomposition of poverty between two distributions (𝑡𝑡 = 0, 1), that could be two 
populations or two years, aims at identifying in such differential a composition effect driven by 
differences in the distribution of key households’ characteristics (an 𝑁𝑁𝑡𝑡𝑥𝑥𝑥𝑥 matrix 𝑋𝑋𝑡𝑡) observed 
with a common support in both distributions, and an income structure effect that reflects how the 
conditional distribution of income of people with those given characteristics, 𝐹𝐹𝑦𝑦𝑡𝑡 ≡ 𝐹𝐹(𝑦𝑦𝑡𝑡|𝑋𝑋𝑡𝑡), 
differs between both distributions (poverty conditional on characteristics).7  

Let 𝑃𝑃(𝐹𝐹(𝑦𝑦𝑠𝑠|𝑋𝑋𝑡𝑡)) be the poverty measure when people in a distribution 𝑡𝑡 obtain incomes under the 
income structure prevailing in distribution 𝑠𝑠. Then 𝑃𝑃(𝐹𝐹(𝑦𝑦0|𝑋𝑋0)) and 𝑃𝑃(𝐹𝐹(𝑦𝑦1|𝑋𝑋1)) are the 
corresponding observed poverty measures in each comparison distribution. In this context, it will 
be useful to also consider 𝑃𝑃(𝐹𝐹(𝑦𝑦0|𝑋𝑋1)) as the poverty level that would have prevailed in the 
counterfactual or hypothetical situation in which people in distribution 1 obtained their income 
under the income structure of 0.8 By just adding and subtracting this counterfactual measure to 
the overall difference ∆𝑂𝑂𝑃𝑃 , we get the aggregate decomposition into the income structure effect ∆𝑆𝑆𝑃𝑃 
(differential in conditional poverty evaluated with the distribution of characteristics in 1) and the 
composition effect ∆𝑋𝑋𝑃𝑃 (poverty differential induced by a different composition of the population 
by characteristics, evaluated at conditional poverty levels observed in 0): 

𝑃𝑃(𝐹𝐹(𝑦𝑦1|𝑋𝑋1)) − 𝑃𝑃(𝐹𝐹(𝑦𝑦0|𝑋𝑋0)) = [𝑃𝑃(𝐹𝐹(𝑦𝑦1|𝑋𝑋1)) − 𝑃𝑃(𝐹𝐹(𝑦𝑦0|𝑋𝑋1))] + [𝑃𝑃(𝐹𝐹(𝑦𝑦0|𝑋𝑋1)) − 𝑃𝑃(𝐹𝐹(𝑦𝑦0|𝑋𝑋0))] 

∆𝑜𝑜𝑃𝑃     =                  ∆𝑆𝑆𝑃𝑃                                   +              ∆𝑋𝑋𝑃𝑃 

To undertake this aggregate decomposition, it is necessary to estimate the counterfactual 
𝑃𝑃(𝐹𝐹(𝑦𝑦0|𝑋𝑋1)). Most of the literature on poverty analysis has done this by assuming a relationship 
between individual poverty functions of the FGT family (mainly the head-count ratio) and a linear 
combination of the row vector of individual household characteristics 𝑥𝑥, 𝑝𝑝𝛼𝛼(𝑦𝑦) = 𝑔𝑔(𝑥𝑥𝑥𝑥), 
allowing to estimate the counterfactual measure as the average predicted value for one group (t) 

 

5 E.g., see Zheng (1997) or Foster (2006: 41-65). 
6 Additive decomposability is more demanding that subgroup consistency, since it imposes proportionality between 
the increase in group and overall poverty levels. Most measures in Zheng (1997) that are subgroup consistent are also 
additively decomposable.  
7 These effects receive different names: characteristics or explained (composition); coefficients or unexplained 
(structure). 
8 There is an index number problem. The roles of both distributions in the counterfactual can be reversed. The 
decomposition can also be averaged over the two possible alternatives (Shapley decomposition; e.g., Shorrocks 2013) 
or estimated using the pooled sample, among other options (see Fortin et al. 2011; Jann 2008). 
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using the estimated coefficients for the other group (s): 𝑃𝑃(𝐹𝐹(𝑦𝑦𝑠𝑠|𝑋𝑋𝑡𝑡)) = 𝐸𝐸�𝑔𝑔(𝑥𝑥𝑡𝑡𝛽𝛽𝑠𝑠)� = 𝑔̅𝑔(𝑥𝑥𝑡𝑡𝛽𝛽𝑠𝑠). A 
similar logic could be applied to the poverty functions of other indices. 

The above relationship can be linear, like in the Blinder-Oaxaca approach, leading to the estimation 
of the LPM in the most popular case of the head-count ratio, for example, or the ordinary least 
squares (OLS) estimation of any transformation of the normalized poverty gap. However, the 
relationship may also be non-linear in other cases, like when using logit or probit in the case of the 
head-count ratio, imposing that the predicted probabilities fall between 0 and 1. Or when using a 
tobit model in the case of the poverty gap or its square, for example, taking into account that 
normalized poverty gaps are actually censored at the poverty line, when they take value 0.  

Alternatively, one may consider adapting the RIF decomposition approach to this context, as will 
be explained in more detail below. I first discuss the RIF concept, and then the two possible 
strategies for implementing the RIF approach: one-stage or two-stage decomposition, depending 
on whether the aggregate decomposition is first obtained by reweighting. 

5 The RIF of poverty measures 

The influence function (IF) of a poverty measure 𝐼𝐼𝐼𝐼(𝑦𝑦;𝑃𝑃) quantifies the impact on poverty of 
marginally increasing the population mass at a certain income 𝑦𝑦 (i.e., a small ‘contamination’) and 
has an expected value of zero. More formally, if 𝐹𝐹𝜀𝜀 is a mixture distribution assigning a probability 
1 − 𝜀𝜀 to the original distribution 𝐹𝐹 and 𝜀𝜀 to a degenerated distribution with all its population mass 
at a 𝑦𝑦, the IF is the directional derivative of 𝑃𝑃 for this mixture distribution when 𝜀𝜀 → 0 (see 
Hampel 1974): 

𝐼𝐼𝐼𝐼(𝑦𝑦;𝑃𝑃) = 𝜕𝜕
𝜕𝜕𝜀𝜀
𝑃𝑃(𝐹𝐹𝜀𝜀) )|𝜀𝜀=0 ; with 𝐸𝐸(𝐼𝐼𝐼𝐼(𝑦𝑦;𝑃𝑃) = 0 

The recentered influence function 𝑅𝑅𝐼𝐼𝐼𝐼(𝑦𝑦;𝑃𝑃) (Firpo et al. 2007) is just obtained after recentering 
the IF at the value of 𝑃𝑃: 

𝑅𝑅𝐼𝐼𝐼𝐼(𝑦𝑦;𝑃𝑃) = 𝑃𝑃�𝐹𝐹𝑦𝑦 � + 𝐼𝐼𝐼𝐼(𝑦𝑦;𝑃𝑃); with 𝐸𝐸(𝑅𝑅𝐼𝐼𝐼𝐼(𝑦𝑦;𝑃𝑃) = 𝑃𝑃�𝐹𝐹𝑦𝑦) � 

A RIF poverty regression will relate individual RIF values of a specific poverty measure and 
household characteristics given by 𝑋𝑋 that can be estimated by OLS, so that: 

𝑃𝑃�𝐹𝐹𝑦𝑦 � = 𝐸𝐸�𝑅𝑅𝑅𝑅𝑅𝑅(𝑦𝑦;𝑃𝑃)� = 𝑋𝑋�𝛽𝛽 

𝑃𝑃�𝐹𝐹𝑦𝑦 � can thus be written as just the weighted sum of the impact of all average household 
characteristics on poverty. In this context, it is useful to note that the RIF can be interpreted in 
terms of individual or group contributions to poverty (Gradín 2020). 

In the case of additively decomposable measures, it is straightforward to note that the 
corresponding RIF is just given by the individual poverty function: 

𝑅𝑅𝑅𝑅𝑅𝑅(𝑦𝑦;𝑃𝑃) = 𝑝𝑝(𝑦𝑦) 

This is derived from the fact that individual poverty functions themselves are not affected by the 
contamination: 𝑃𝑃(𝐹𝐹𝜀𝜀) = (1 − 𝜀𝜀)𝑃𝑃�𝐹𝐹𝑦𝑦� + 𝜀𝜀𝜀𝜀(𝑦𝑦), and 𝜕𝜕

𝜕𝜕𝜀𝜀
𝑃𝑃(𝐹𝐹𝜀𝜀 )|𝜀𝜀=0 = 𝑝𝑝(𝑦𝑦) − 𝑃𝑃�𝐹𝐹𝑦𝑦� = 𝐼𝐼𝐼𝐼(𝑦𝑦;𝑃𝑃). 
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In cases like the Sen measure and extensions in which the poverty function weights the normalized 
poverty gap by a measure of the individual rank, the RIF should also account for an indirect effect 
through a change in the rank-based weights of other incomes and will not be equal to the poverty 
function. Essama-Nssah and Lambert (2012: 135–159) have already obtained the necessary 
expressions for some of these additively decomposable indices like the FGT or Watts, which are 
straightforward, but also for less straightforward cases, including the Sen index, as well as for other 
useful elements of the poverty analysis toolkit like the Three ‘I’s for Poverty (TIP) ordinates, the 
poverty elasticity of the headcount ratio, and some pro-poorness measures, that can be used in a 
similar fashion. 

Since the 𝑅𝑅𝑅𝑅𝑅𝑅 is basically given by the individual poverty functions (plus the indirect effect in the 
case of rank-based measures), they will generally inherit their properties. For example, the RIF of 
poverty measures will generally be zero for incomes above the poverty line, will tend to be larger 
for poorest incomes in the case of monotonic indices, being disproportionally larger for 
distributive-sensitive measures. 

5.1 A one-stage RIF decomposition 

The RIF regressions can then be used to decompose ∆𝑜𝑜𝑃𝑃 as in the conventional Blinder-Oaxaca 
decomposition, with individual 𝑅𝑅𝑅𝑅𝑅𝑅(𝑦𝑦;𝑃𝑃) being the dependent variable, obtaining the overall, 
composition and structure effects as:  

∆𝑜𝑜𝑃𝑃= [𝑋𝑋�1𝛽𝛽1 − 𝑋𝑋�0𝛽𝛽0] = ∆𝑋𝑋𝑃𝑃 + ∆𝑆𝑆𝑃𝑃 

∆𝑋𝑋𝑃𝑃= [𝑋𝑋�1 − 𝑋𝑋�0]𝛽𝛽0;  ∆𝑆𝑆𝑃𝑃= 𝑋𝑋�1[𝛽𝛽1 − 𝛽𝛽0] 

Due to linearity, the individual contribution of each average variable 𝑥̅𝑥𝑘𝑘 to each effect can be 
obtained as:  

∆𝑂𝑂𝑘𝑘
𝑃𝑃 = 𝑥̅𝑥1𝑘𝑘𝛽𝛽1𝑘𝑘 − 𝑥̅𝑥0𝑘𝑘𝛽𝛽0𝑘𝑘 = ∆𝑋𝑋𝑘𝑘

𝑃𝑃 + ∆𝑆𝑆𝑘𝑘
𝑃𝑃  

∆𝑋𝑋𝑘𝑘
𝑃𝑃 = �𝑥̅𝑥1𝑘𝑘 − 𝑥̅𝑥0𝑘𝑘�𝛽𝛽0𝑘𝑘 ; ∆𝑆𝑆𝑘𝑘

𝑃𝑃 = 𝑥̅𝑥1𝑘𝑘�𝛽𝛽1𝑘𝑘 − 𝛽𝛽0𝑘𝑘� 

This procedure is therefore equivalent to running the Blinder-Oaxaca decomposition of 
differences in poverty functions of additive measures, using a linear probability model.  

As discussed above, the main approach adopted in part of the literature was to estimate non-linear 
regressions instead (logit/probit or tobit). Using the RIF values as dependent variables, the 
corresponding effects can be obtained as:9 

∆𝑜𝑜𝑃𝑃= 𝑔̅𝑔(𝑥𝑥1𝛽𝛽1) − 𝑔̅𝑔(𝑥𝑥0𝛽𝛽0) = ∆𝑋𝑋𝑃𝑃 + ∆𝑆𝑆𝑃𝑃 

∆𝑋𝑋𝑃𝑃= 𝑔̅𝑔(𝑥𝑥1𝛽𝛽0) − 𝑔̅𝑔(𝑥𝑥0𝛽𝛽0);  ∆𝑆𝑆𝑃𝑃= 𝑔̅𝑔(𝑥𝑥1𝛽𝛽1) − 𝑔̅𝑔(𝑥𝑥1𝛽𝛽0) 

  

 

9 A different approach to deal with non-linearity in the aggregate effects consists of computing poverty using a Probit 
distribution function of incomes that were predicted using loglinear regressions (Coudouel et al. 2002). 
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Due to the above linearization, the detailed contributions can be obtained as:  

∆𝑂𝑂𝑘𝑘
𝑃𝑃 =

𝑥̅𝑥1𝑘𝑘𝛽𝛽1𝑘𝑘 − 𝑥̅𝑥0𝑘𝑘𝛽𝛽0𝑘𝑘

𝑋𝑋�1𝛽𝛽1 − 𝑋𝑋�0𝛽𝛽0
∆𝑜𝑜𝑃𝑃= ∆𝑋𝑋𝑘𝑘

𝑃𝑃 + ∆𝑆𝑆𝑘𝑘
𝑃𝑃  

∆𝑋𝑋𝑘𝑘
𝑃𝑃 = �𝑥̅𝑥1𝑘𝑘−𝑥̅𝑥0𝑘𝑘�𝛽𝛽0𝑘𝑘

(𝑋𝑋�1−𝑋𝑋�0)𝛽𝛽0
∆𝑋𝑋𝑃𝑃; ∆𝑆𝑆𝑘𝑘

𝑃𝑃 = 𝑥̅𝑥1𝑘𝑘�𝛽𝛽1𝑘𝑘−𝛽𝛽0𝑘𝑘�
𝑋𝑋�1(𝛽𝛽1−𝛽𝛽0) ∆𝑆𝑆

𝑃𝑃 

It is straightforward to see that this is a generalization of the expressions above that are equivalent 
whenever 𝑔𝑔 is linear because then 𝑔̅𝑔(𝑥𝑥𝑡𝑡𝛽𝛽𝑠𝑠) = 𝑥̅𝑥𝑡𝑡𝛽𝛽𝑠𝑠.10 

A caveat is needed on how to interpret the detailed contributions of the structure effect of these 
decompositions (Oaxaca and Ransom 1999). For categorical variables (i.e., sets of dummy variables 
in regressions), the estimated contribution of each category depends on which category was 
omitted. Also, the contribution of a continuous variable will depend on its scale. The latter is only 
a problem in the case of variables that do not have a natural or generally accepted scale. For the 
former, there are some solutions that have been proposed in the literature using a renormalization 
of the estimated coefficients, but all these are ad hoc (Fortin et al. 2011) and do not change the 
nature of the problem. This implies that the interpretation of the income structure coefficients 
should always admit this limitation. 

5.2 The two-stage approach (Reweighting + RIF) 

In the main complete approach proposed by Firpo et al (2007), the estimation strategy is carried 
out in two stages. The aggregate decomposition is done in the first stage using a reweighting 
method approach. This semi-parametric method is based on a propensity score procedure 
(DiNardo et al. 1996) and provides a consistent estimate of the entire counterfactual distribution 
under the ignorability assumption (both distributions have the same distribution of unobservables 
conditional on characteristics), without the need to assume any functional form. Any statistic of 
interest, including poverty measure 𝑃𝑃, can be calculated on this counterfactual distribution, 
obtaining 𝑃𝑃(𝐹𝐹(𝑦𝑦0|𝑋𝑋1)), and then both ∆𝑆𝑆𝑃𝑃 and ∆𝑋𝑋𝑃𝑃 can be easily computed. 

If we rewrite the density of a distribution as the integral, over the distribution of individual 
characteristics, of the product between the density of income conditional on individual 
characteristics and the marginal distribution of individual characteristics: 

𝑓𝑓(𝑦𝑦𝑡𝑡|𝑋𝑋𝑡𝑡) = � 𝑓𝑓(𝑦𝑦𝑡𝑡|𝑥𝑥𝑡𝑡)𝑑𝑑𝑑𝑑(𝑥𝑥𝑡𝑡)
𝑥𝑥∈Ω𝑥𝑥

 

the counterfactual distribution requires replacing the marginal distribution of 𝑋𝑋 in 0 with the 
marginal distribution in 1. This can be done by rescaling the sampling weights in 0 by a reweighting 
factor 𝜓𝜓(𝑋𝑋): 

𝑓𝑓(𝑦𝑦0|𝑋𝑋1) = � 𝑓𝑓(𝑦𝑦0|𝑥𝑥0)𝑑𝑑𝑑𝑑(𝑥𝑥1)
𝑥𝑥∈Ω𝑥𝑥

= � 𝑓𝑓(𝑦𝑦0|𝑥𝑥0)𝑑𝑑𝑑𝑑(𝑥𝑥0)𝜓𝜓(𝑋𝑋)
𝑥𝑥∈Ω𝑥𝑥

 

 

10 Predicted poverty using probit or tobit is a consistent (but not exact) estimate of the observed value. Thus, the 
decomposition of the observed gap can be obtained by extrapolation of the decomposition of the predicted gap. 
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Applying Bayes’ rule, this factor can be rewritten as: 

𝜓𝜓(𝑋𝑋) =
𝑑𝑑𝑑𝑑(𝑥𝑥1)
𝑑𝑑𝑑𝑑(𝑥𝑥0) =

Pr(𝑋𝑋|𝑡𝑡 = 1)
Pr(𝑋𝑋|𝑡𝑡 = 0) =

Pr(𝑡𝑡 = 1|𝑋𝑋)
Pr(𝑡𝑡 = 0|𝑋𝑋)

Pr(𝑡𝑡 = 0)
Pr(𝑡𝑡 = 1) 

Therefore, to obtain the rescaling factor, we need to estimate the probability that each person is 
observed in 1 conditional on a set of covariates, Pr(𝑡𝑡 = 1|𝑋𝑋) and its complementary, 
Pr(𝑡𝑡 = 0|𝑋𝑋) = 1 − Pr(𝑡𝑡 = 1|𝑋𝑋) using a pooled sample of both distributions. In practical terms, 
this can be done non-parametrically if variables are categorical and the number of categories is not 
too large for the sample of interest; or using the predicted values of a logit or probit model in 
which the dependent variable is a dummy indicating membership to distribution 1, and the 
explanatory variables are the key covariates along all possible interactions. The general idea is to 
rescale the sampling weights of people in 0 so that their average characteristics are as close as 
possible to those of 1, while keeping their conditional incomes.  

The aggregate decomposition can then be obtained as: 

∆𝑆𝑆𝑃𝑃= 𝑋𝑋1𝛽𝛽1 − 𝑋𝑋𝑅𝑅𝛽𝛽𝑅𝑅;  ∆𝑋𝑋𝑃𝑃= 𝑋𝑋R𝛽𝛽𝑅𝑅 − 𝑋𝑋0𝛽𝛽0, 

where the subscript 𝑅𝑅 indicates the reweighted distribution. One limitation of this reweighting 
procedure, however, is that obtaining detailed decompositions, especially of the structure effects, 
is not straightforward.11 This is why, in the second stage, the detailed decomposition is obtained 
using two linear RIF poverty decompositions comparing the counterfactual with each of the two 
original distributions.  

A RIF poverty decomposition of the difference between distribution 1 and the reweighted 
counterfactual can be used to break the aggregate structural effect into a pure RIF structural effect 
∆𝑆𝑆,𝑝𝑝
𝑃𝑃  (the RIF income structure effect in this decomposition) and a RIF reweighing error ∆𝑆𝑆,𝑒𝑒

𝑃𝑃  (the 
corresponding RIF composition effect). The latter captures the extent to which we failed in 
reproducing the distribution of characteristics in 1 and is expected to be small if the specification 
is rich enough: 

∆𝑆𝑆𝑃𝑃= 𝑋𝑋�1𝛽𝛽1 − 𝑋𝑋�𝑅𝑅𝛽𝛽R 

∆𝑆𝑆,𝑝𝑝
𝑃𝑃 = 𝑋𝑋�1(𝛽𝛽1 − 𝛽𝛽𝑅𝑅);∆𝑆𝑆,𝑒𝑒

𝑃𝑃 = (𝑋𝑋�1 − 𝑋𝑋�𝑅𝑅)𝛽𝛽𝑅𝑅 

Similarly, a RIF poverty decomposition of the difference between the reweighted counterfactual 
and 0 distributions can break the aggregate composition effect into a pure RIF composition effect 
∆𝑋𝑋,𝑝𝑝
𝑃𝑃  (the RIF composition term in this decomposition) and a specification error ∆𝑋𝑋,𝑒𝑒

𝑃𝑃  (the 
corresponding RIF structure term), which takes into account the fact that a change in an average 
characteristic may also affect conditional poverty: 

∆𝑋𝑋𝑃𝑃= 𝑋𝑋�𝑅𝑅𝛽𝛽R − 𝑋𝑋�0𝛽𝛽0 

 

11 The detailed decomposition of the composition effect using reweighting can also be estimated by computing the 
rescaling factors in a sequence of regressions adding a new factor each, or to address omitted variable bias, one single 
regression but sequentially switching on each coefficient (starting with all set to zero). In both cases there is a problem 
of path dependence on the order in which factors are accounted for, that can be addressed by applying a Shapley 
decomposition over all possible sequences (e.g., Gradín 2014). This can be cumbersome with many factors and will 
not yet identify the detailed decomposition of the structure effect.  
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∆𝑋𝑋,𝑝𝑝
𝑃𝑃 = (𝑋𝑋�𝑅𝑅 − 𝑋𝑋�0)𝛽𝛽0;  ∆𝑋𝑋,𝑒𝑒

𝑃𝑃 = 𝑋𝑋�𝑅𝑅(𝛽𝛽𝑅𝑅 − 𝛽𝛽0) 

The corresponding detailed effects can be obtained directly from these terms as in the one-stage 
RIF decomposition. The analysis can be focused on the detailed effects of interest, that is, the pure 
RIF composition (∆𝑋𝑋,𝑝𝑝

𝑃𝑃 ) and pure RIF structure (∆𝑆𝑆,𝑝𝑝
𝑃𝑃 ) effects. Note that these RIF effects add up 

to the corresponding reweighting totals only if each error term is zero, something that one would 
expect in the case of reweighting, but not necessarily in the case of the specification error, which 
can be case-specific.12 

6 Concluding remarks 

I have shown that RIF regression decompositions can be a very useful tool for understanding what 
factors are associated with distributional differences over time or between population groups, and 
poverty is no exception to this. The most common poverty regression-based decomposition found 
in the empirical literature has estimated these decompositions using regressions of FGT poverty 
functions, mainly for the headcount ratio, on household characteristics, typically using non-linear 
models. I have argued that these can be seen as a specific case of the one-stage RIF approach 
because the poverty functions and the RIF are equivalent concepts in the case of additively 
decomposable indices. The intuition is that the impact of a marginal increase in the population on 
a particular income (RIF) will be given by the corresponding individual poverty function, without 
affecting the poverty functions of other incomes. However, this is not true in the case of rank-
based indices such as Sen and extensions, because in those cases, the marginal increase in the 
proportion of people with an income will affect the rank of the other people and therefore, their 
poverty functions. In the case of these indices, a regression of the poverty function will be different 
from a regression of the RIF. However, note that the latter is probably a better representation of 
the individual impact on overall poverty because it considers both direct and indirect effects, while 
the former only represents the direct. Furthermore, the combined reweighting/RIF approach (two 
stages) allows not to impose any functional form on the relationship between characteristics and 
poverty in obtaining the aggregate decomposition, regardless of the index used. And this is done 
in a way that is consistent with the method used in the analysis of other distributive measures, 
since the RIF applies to any index for which the RIF exists. Therefore, the RIF emerges as a more 
general and consistent approach that is applied to any index and relaxes the need to impose a 
functional form in the relationship between poverty and characteristics at the aggregate level. 
Assumptions about the functional form are still necessary to obtain the detailed decomposition 
using RIF, but the method provides a way to test for a specification error. 
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