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1 Introduction

The conceptualization and measurement of well-being as a multidimensional phenomenon is long-

standing. Following the seminal contribution of Alkire and Foster (2011a), who proposed a generalization

of the Foster-Greer-Thorbecke class of poverty measures (Foster et al., 1984) to multiple domains of

deprivation, their approach to measuring multidimensional well-being has been widely applied. A Google

Scholar search reveals over 1,000 papers applying or discussing their framework.1 Also, since 2010,

the UN’s annual Human Development Report has included a multidimensional poverty index of the

Alkire-Foster type, based on survey data for more than 100 countries and covering ten dimensions of

well-being. And both Mexico and Colombia have adopted the same type of multidimensional index to

guide and track progress in national poverty reduction (e.g., Angulo et al., 2016).

In line with many approaches to multidimensional poverty measurement, as well as the construction of

various composite indexes (e.g., Foster et al., 2013; Jones, 2016), the Alkire-Foster procedure aggregates

observations across various separate dimensions by applying a set of dimensional weights (Decancq and

Lugo, 2013).2 In addition to these, an overall cut-off (threshold) is applied to determine whether a given

weighted sum of deprivations is sufficient to identify a unit as poor. Reflecting the central role of these

weights and cut-off in the procedure, it is natural that different identification schemes (functions) are

almost invariably described with recourse to the choice of these inputs. This is exemplified by debates

over how identification functions should be constructed, which focus on choosing specific numerical

values for the weights and cut-off (e.g., Alkire and Foster, 2011b; Alkire et al., 2011; Ravallion, 2012;

Santos and Villatoro, 2018; Abdu and Delamonica, 2018; Mitra, 2018). In doing so, the assumption is

that variations in the weights and/or cut-off map in transparent fashion to differences in who is identified

as poor. Consequently, these same inputs are often thought to be appropriate objects for participatory

determination and public debate (e.g., Sen and Anand, 1997).

The above indicates that the weights and cut-offs are generally treated as sufficient to characterise poverty

identification functions within the Alkire-Foster tradition. In addition, the same weights are frequently

interpreted as capturing the relative importance of each dimension. As Alkire and Santos (2014) state:

“the weighting structure determines the assumed trade-offs across deprivations” (p. 256; also see Alkire

and Foster, 2011a). Similarly, in an application of the Alkire-Foster approach, Pasha (2017) notes that:

“[w]eights for any composite index of well-being can be based on the trade-offs they imply between

the dimensions of well-being.” (p. 270). With a similar motivation in mind, Decancq and Lugo (2013)

provide a detailed survey of different approaches to setting weights and their underlying rationales, also

concluding that weights are crucial factors that determine the trade-off between dimensions.

1 These results are based on the search string:‘ “multidimensional poverty” “Alkire Foster” ’ (16 April 2019).
2 Key contributions to the literature on constructing multidimensional measures of well-being include Maasoumi
(1986); Atkinson (2003); Bourguignon and Chakravarty (2003). For a broader discussion see Anand et al. (2011).
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This paper does not contest the central role that the vector of weights and cut-off play within multi-

dimensional poverty identification in the Alkire-Foster tradition. Nonetheless, the purpose here is to

clarify how these inputs should be interpreted and deployed in auxiliary analyses. Contrary to their

general treatment in the literature, I show that different weight/cut-off vectors are not unique to each

poverty identification function. Theoretically, an infinite number of weights/cut-offs will yield identical

identification functions and, thereby, count the same units as poor. This is important since it means

variations in the weights or cut-off do not map directly to differences in identification outcomes; it also

means that the numerical values of weights do not provide clear guidance as to the relative importance

of each deprivation dimension. Thus, an exclusive focus on the weights/cut-off in both the design and

analysis of different identification functions may be at best inefficient, and at worst misleading.

To develop these arguments, Section 2 begins with a motivating example. It shows, numerically and

graphically, how superficially different weight/cut-off vectors map to the same identification outcomes.

This holds not only for the aggregate poverty headcount, but also at the unit individual level – i.e., all the

same units are identified as either poor or non-poor by multiple different input vectors. Moreover, I further

demonstrate this result does not depend on minuscule changes to the magnitudes of the weights/cut-offs;

rather, dissimilar rankings of the dimensional weights can yield equivalent identification outcomes.

Section 3 explains how this result comes about. To do so, I highlight the Alkire-Foster procedure

constitutes an application of Boolean threshold logic, the functional properties of which have been

extensively studied and arise in other contexts, including weighted voting games. Drawing on this

literature, the number of feasible poverty identification functions in m variables is established as finite. In

addition, I demonstrate a simple means to uniquely characterise each identification function, based on

what I refer to as the set of ‘minimal deprivation bundles’. This is the collection of the smallest bundles of

deprivations required to identify any unit as poor, and which is the direct counterpart of minimal winning

coalitions in voting games.

Section 4 pursues two (of various) applications that derive from the re-presentation of Alkire-Foster

identification functions in terms of minimal bundles of deprivations. The first is a novel poverty decom-

position, which dispenses with the non-unique weights/cut-off to reveal both the absolute contribution of

each minimal bundle to the aggregate headcount as well as the contribution of each dimension. Using

data from Mozambique, I show that this unique decomposition can differ sharply to the conventional

decompositions found in applications of the Alkire-Foster procedure. The second application presents

metrics of dimensional power, based on a number of indexes used extensively in game theory. This yields

new insights about the relative importance of each dimension, which diverges from the magnitudes of the

weights. Furthermore, I note that given the formal properties of these power metrics they can be broadly

interpreted as shadow values. Lastly, Section 5 concludes and notes future directions of research.
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2 Motivating example

This section outlines some of the difficulties that arise when identification of the poor is considered purely

in terms of selecting a set of weights and an associated cut-off. Before proceeding, some basic definitions

are in order. As per the conventional Alkire-Foster set-up, assume there exists an n×m matrix of binary

deprivation measures, with n units of interest (e.g., individuals) and m dimensions of deprivation. The

elements of this matrix are labelled dij such that dij = 1 if unit i ∈ {1, . . . , n} is deemed to be deprived

in dimension j ∈ {1, . . . ,m} and zero otherwise.3 To identify who is poor, a vector of normalized

weights (w1, w2, ..., wm) and single cut-off, k, is conventionally used. Concretely, unit i’s binary poverty

status is calculated by applying the indicator function:

hi = 1

 m∑
j=1

dijwj ≥ k

 (1)

where ∀j : 0 < wj < 1,
m∑
j=1

wj = 1, 0 < k ≤ 1

Equation (1) identifies if unit i is poor according to a given vector of weights and cut-off. In this sense, a

particular combination (~w; k) constitutes a poverty identification scheme (poverty definition). In turn, the

aggregate multidimensional poverty headcount is obtained from the (sample weighted) average of the

resultant vector of unit-specific poverty indicators: H = E(hi); and the adjusted headcount is derived as:

M0 = E(hi ×
∑m

j=1 dijwj), which takes into account differences in the intensity of poverty among the

poor.

The above highlights the key roles of the weight vector and cutoff for poverty identification. An overlooked

feature of the Alkire-Foster approach is that what may appear quite distinct choices for (~w; k) can map

to the exact same poverty identification outcomes for the same input vector – i.e., different choices of

(~w; k) typically do not equate to unique poverty definitions. This feature is illustrated in Table 1 below,

which simulates a case of five deprivation dimensions and where each row describes a particular choice

for (~w; k). The first five columns indicate the weights ascribed to each dimension, and the sixth column

gives the cut-off. Row 1(a) is a naïve scheme that ascribes equal weights to each dimension; so, with

k = 0.8, a unit (individual) must be deprived in at least four dimensions to be considered poor. Rows 1(b)

and 1(c) present alternative weights and cut-offs (generated using pseudo-random numbers); but both

of these functions map to exactly the same poverty definition as 1(a) – i.e., the sum of any four of the

weights (and no less) is always required to breach the associated cut-off.

3 I presume throughout that both the deprivation dimensions and unit-wise observations are held constant – i.e., are
taken from the raw data. Note the binary deprivation measures can be obtained in a variety of ways, including via
transformations of continuous measures.
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Table 1: Examples of equivalent poverty identification functions
f w1 w2 w3 w4 w5 k H M0

1(a) 0.200 0.200 0.200 0.200 0.200 0.800 0.346 0.307
1(b) 0.179 0.156 0.222 0.235 0.207 0.684 0.346 0.303
1(c) 0.165 0.221 0.184 0.211 0.220 0.673 0.346 0.307

c.v. 0.097 0.171 0.096 0.084 0.048 0.098 0.000 0.007

2(a) 0.328 0.047 0.459 0.068 0.099 0.515 0.490 0.422
2(b) 0.300 0.027 0.483 0.050 0.140 0.514 0.490 0.427
2(c) 0.136 0.114 0.409 0.148 0.194 0.536 0.490 0.398

c.v. 0.408 0.724 0.083 0.588 0.331 0.024 0.000 0.036
Note: Each row sets out the parameters of an Alkire-Foster poverty identification 
function in five d imensions, c ontaining a  s et o f w eights (w1, . . . , w 5) a nd cut-off 
(k); columns H and M0 report the aggregate headcount and adjusted headcount, 
respectively, based on the same parameters and using data from Mozambique in 
2014/15 (see Section 4).
Source: author's calculations.

The mechanics behind this result, which prefigure results to come, are demonstrated in Table A1 in the

Supplementary Material. Here I enumerate all 25 = 32 unique combinations of deprivations in five

dimensions, which represents the basis for a Boolean truth table. For each combination, I apply equation

(1) using each (~w; k) from rows 1(a)-1(c) and verify whether the given combination of deprivations is

‘sufficient’ to identify a unit as poor (i.e., if the sum of weights associated with that combination exceeds

the cut-off). This exercise confirms that rows 1(a)-1(c) classify all possible combinations in exactly the

same way. So, it is no surprise that the overall poverty headcounts (H) reported in the table, based on

survey data from Mozambique (see Section 4 for details) are identical.4

The same idea is illustrated visually in Figure 1, which plots the cumulative sum of the weights, ordered

smallest to largest and vice versa for each identification function. In all cases, four steps (weights) are

required either to exceed or to equal the cut-off, indicated by the dashed horizontal line. It is precisely

because poverty identification can be described via a (non-smooth) step function that there is a scope

for alternative values of (~w; k) to yield equivalent identification conditions. And here there is non-trivial

variation in the weights ascribed to each dimension (and the cut-off), suggested by the coefficient of

variation (c.v.) for each column.

Rows 2(a)-(c) provide a second example of different choices of (~w; k) that map to equivalent poverty

4 Note that differences in weights have a direct influence on the M0 metric, although even here the variation appears
small. The issue is that while multiple weights and cut-offs map to the same identification function, it remains the
case that within the set of equivalent weights and cut-offs (identifying the same people as poor), the measure M0

will vary as long as the chosen weights (as opposed to deprivation shares) are deployed in the calculation.
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Figure 1: Visualization of poverty identification functions
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Note: Each figure plots the cumulative sum of weights based on the vectors reported in Table 1 (rows 1a-1c), 
ordered from smallest to largest and vice versa; the associated cut-off k is given by the dashed horizontal line.
Source: author's illustration; see text.
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Figure 2: Visualization of poverty identification functions
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Note: Each figure plots the cumulative sum of weights based on the vectors reported in Table 1 (rows 2a-2c), order 
from smallest to largest and vice versa; the associated cut-off k is given by the dashed horizontal line.
Source: author's illustration; see text.
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definitions, visualised in Figure 2. The combinations of weights that are sufficient to exceed the cut-off

are more varied here, ranging from four to just two. Also in keeping with the first example, the rank

order of the weights in each dimension is not consistent between rows; and the relative magnitude of the

weights varies substantially. For instance, in Row 2(a) the ratio w1/w5 is greater than three; but in Row

2(c), the same ratio is less than one. Despite these large differences, there remains no variation in the

contribution of each dimension toward poverty identification and each row vector (~w; k) identifies the

same units as poor or non-poor (see also Table A1).

These examples reveal that effective differences in poverty identification do not map directly from

differences in the values of (~w; k). As such, the impact of variations in the weights ot cut-off on the

identification function are not immediately obvious; and the relative importance of each dimension to

identifying who is poor does not appear to be captured by distances between weights or their rank order.

From this, it follows that an exclusive focus on the numerical magnitudes of weights and cut-offs may

give a false sense of precision and, in some instance, may even be misleading.

3 Identification via deprivation bundles

The previous section demonstrated that a given combination of weights and cut-off (~w; k) does not

necessarily map to a unique definition of who is poor. This section clarifies why this is the case and, in

turn, shows how poverty identification functions can be uniquely characterised. The starting point is the

previously un(der)recognised isomorphism between the Alkire-Foster poverty identification function and

Boolean threshold functions. The isomorphism is revealed by the obvious equivalence between equation

(1) and equation (10) in the Appendix, which defines Boolean threshold functions and describes their key

features. A primary theoretical result concerning positive Boolean threshold functions is that each can be

uniquely represented by the disjunction of its prime implicants, also known as its complete disjunctive

normal form (DNF) or Blake canonical form. This also is shown formally in the Appendix.5 Prime

implicants of a Boolean threshold function are collections of elements (inputs taking the value of zero or

one), all of which must be true (equal to one) for the aggregate binary outcome to also be true and none

of which are redundant, meaning that if any one element were false (zero) then the aggregate function

could not be true. For example, taking the case of equal weights described in row 1(a) of Table 1, a prime

implicant would be a collection of any four of the dimensions of deprivation. They are ‘prime’ because

at least four dimensions is always needed for a unit to be considered poor; and the collection of all five

dimensions is non-prime because the unit need not be deprived in all five to be considered poor.

5 The Appendix draws on standard textbook material, principally Crama and Hammer (2011) (viz., Theorems 1.04,
1.13 and 1.23) which provides a comprehensive general treatment. The definitions contained therein are valuable
since Boolean functions are not widely studied by social scientists, especially outside of game theory and formal
logic.

7



The equivalence between Boolean threshold functions and the Alkire-Foster procedure implies the latter

is just one of various applications of the former, which also include weighted voting games (e.g., Taylor

and Zwicker, 1992; de Keijzer et al., 2012). So, while the language used to describe these applications

differs, the properties of these functions remain the same. In the context of weighted voting games, prime

implicants are known as minimal winning coalitions; and in the AF tradition, the same essential points

might be termed minimal deprivation bundles. To illustrate the unique characterization of identification

functions via such minimal bundles, recall the examples of Table 1. According to rows 1(a)-1(c), a unit is

classified as poor if they are deprived on any combination of four dimensions. Thus, as already hinted,

the binary identification function can be represented as the union (disjunction) of all minimal bundles

containing four elements. Written in sum-of-products form (used hereafter), which relies on modulus 2

arithmetic, this is:6

f1 = (d1 · d2 · d3 · d4) + (d1 · d2 · d3 · d5)

+ (d1 · d2 · d4 · d5) + (d2 · d3 · d4 · d5) (2)

And the function in rows 2(a)-(c) of Table 1 can be uniquely characterised as:

f2 = (d1 · d2 · d4 · d5) + (d1 · d3) + (d4 · d3) + (d5 · d3) (3)

which contains minimal bundles of either two or four elements (dimensions). Evidently, these charac-

terizations dispense with any reference to the particular (non-unique) weights or cut-off that define the

true points of each function. Again, note each element (literal) in each minimal bundle is non-redundant

and operates as a ‘swing’. For instance, in row 2(a) the sum of weights on dimensions 1, 2, 4 and 5 is

0.54 > k = 0.515; so, removing even the smallest weight (w2 = 0.047) takes the weight sum below the

specified cut-off. By this logic, longer bundles containing all the same elements as a minimal bundle (and

more) are superfluous to the characterization since the minimal bundle is just a subset of a longer one.

Thus, the set of minimal deprivation bundles (prime implicants of f ) lists the shortest possible bundles of

deprivations that are sufficient to identify a unit as poor.

Using representations of the form above, the Alkire-Foster poverty headcount can be directly estimated

by evaluating the function f across the i ∈ {1, . . . , n} units of interest, each with a vector of deprivations,

Di = (di1, . . . , dim) ∈ Bm. As before, we thus have:

hi = f(Di) =⇒ h = E [f(Di)] ≈
1

n

n∑
i=1

f(Di) (4)

6 The equivalent complete DNF representation is:
f1 = (d1 ∧ d2 ∧ d3 ∧ d4) ∨ (d1 ∧ d2 ∧ d3 ∧ d5)

∨ (d1 ∧ d2 ∧ d4 ∧ d5) ∨ (d2 ∧ d3 ∧ d4 ∧ d5)
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Adopting the perspective of deprivation bundles, we see that the same headcount can be calculated by

counting which rows of the deprivation matrix match to the members of the unique set of true points of

the identification function:

H =
1

n

∑
X∈Bm

f(X)
n∑
i=1

min[X = Di] (5a)

=
1

n

∑
X∈T

f(X)

n∑
i=1

min[X = Di] (5b)

=
1

n

∑
X∈T

n∑
i=1

min[X = Di] (5c)

=
1

n

∑
X∈T P

n∑
i=1

min[X ≤ Di] (5d)

and where the final terms, which sum over i, count the units that match to specific rows of the truth table;

and the minimum is evaluated element-wise. This indicates one may work directly with the truth table,

using the proportion of sample observations, π, at each unique point of the Boolean threshold function.

From this, the equivalent expression is:

H =
∑
X∈T

π(X) =
∑
Y ∈T P

π(Y ) +
∑

Z∈T NP

π(Z) (6)

The simplicity (and computational efficiency) of this aggregate procedure can be grasped from Table A1

(Supplementary Material). It shows that the headcount associated with the functions represented by either

of equations (2) or (3) is given by the inner product of the vector of sample proportions and the relevant

vector of true points.

This section has clarified that Boolean threshold functions cannot be uniquely characterized by the

weight vector and cut-off deployed. As such, comparing different functions in terms of their weights

and/or cut-offs may be at best unhelpful (inefficient) and at worst misguided. In contrast, I have shown

that minimal deprivation bundles (the Blake canonical form) provides a unique representation of the

identification function. And, poverty headcounts can be calculated easily using the set of true points

associated with the given function. Of course, this latter step appears superficially similar to the standard

identification and counting procedure. The important difference here is that one uses the threshold

function to identify the true points (and unique set of minimal bundles); and it is these points that are then

matched to an aggregated version of the deprivation matrix, based on its unique rows (mirroring a truth

table).7 Further analytical advantages of approaching identification in this way become apparent below.

Lastly, it merits comment that whilst all poverty identification functions on the form of equation (1) can be

7 This aggregation is not strictly necessary but is both intuitive and substantially reduces computation time (when
looking across different functions).
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represented by a unique collection of minimal bundles, not all feasible collections of bundles (implicants)

can be represented as Boolean threshold functions. A reason is that the classification rules underlying

any given collection may not admit a separating structure, meaning they cannot be expressed in terms

of a specific set of weights and cut-off. This issue has been discussed elsewhere (Crama and Hammer,

2011) and somewhat limits the extent to which deprivation bundles may be relied upon exclusively to

construct multi-dimensional poverty identification functions. Nonetheless, and as I show below, various

approaches can be used to construct feasible threshold functions from proposed information about either

admissible minimal bundles or the relative importance of different dimensions.

4 Applications

The remainder of this paper demonstrates some of the practical applications that derive from the main in-

sight thus far – namely, that minimal bundles of deprivations provide a valuable and unique representation

of counting-based multidimensional poverty identification functions. In doing so, and in order to place

the ideas in a concrete setting, I draw on deprivation data from Mozambique, a low income country in

south eastern sub-Saharan Africa. The country is of interest since it has achieved one of the world’s most

rapid and sustained rates of per capita economic growth since the end of conflict in 1992; however, recent

consumption poverty estimates have raised concerns as to how well aggregate growth has translated into

broad-based welfare gains (DNEAP, 2010; Arndt et al., 2012; DEEF, 2016). Indeed, the latest household

survey from 2014/15 indicates that headcount consumption poverty affected 46% of the population versus

53% in 2002.8 At the same time, the same surveys indicate more consistent gains in non-consumption

dimensions, including ownership of assets and access to public goods, such as education services. This

motivates a multi-dimensional analysis.

In order to proceed with a counting-based multi-dimensional poverty analysis, it is necessary to select

the deprivation dimensions of interest. Although this decision can be somewhat controversial, feasible

choices are often limited by the availability of consistent data over time, as well as exclusion of highly

correlated dimensions. The dimensions selected for the present exercise are summarised in Table 2, which

reports the share of households deprived in each of eight individual dimensions across four existing waves

of nationally-representative household survey data collected by the national statistics agency in 1996/97,

2002/03, 2008/09 and 2014/15. The dimensions cover three broad areas: human capital (literacy of the

household head); housing conditions (access to electricity, water and sanitation, and roofing quality); and

ownership of assets (transport assets, information and communications assets, and durable goods). For

each dimension, households who are classified as deprived receive a score of one and zero otherwise.9

8 Survey weights are applied in all estimates in this section.
9 Further details on the data and construction of the underlying deprivation dimensions is available on request from
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Table 2: Dashboard of deprivations experienced by households, national means
1996/97 2002/03 2008/09 2014/15

H (s.e.) H (s.e.) H (s.e.) H (s.e.)

Literacy 47.75 (0.55) 45.57 (0.54) 44.65 (0.48) 41.57 (0.46)
Electricity 93.88 (0.26) 91.07 (0.31) 84.80 (0.35) 72.94 (0.42)
Clean water 72.99 (0.49) 58.56 (0.53) 57.55 (0.48) 47.66 (0.47)
Sanitation 95.55 (0.23) 85.97 (0.37) 82.00 (0.37) 71.63 (0.42)
Roofing 78.21 (0.46) 70.85 (0.49) 67.26 (0.45) 58.00 (0.46)
Transport 82.40 (0.42) 65.59 (0.51) 54.66 (0.48) 55.63 (0.46)
Information 63.10 (0.53) 42.80 (0.53) 37.45 (0.47) 24.64 (0.40)
Durables 87.29 (0.37) 79.48 (0.43) 68.70 (0.45) 49.65 (0.47)

Average 77.65 (0.46) 67.48 (0.50) 62.13 (0.47) 52.72 (0.47)

Notes: Cells indicate the share of households deprived on a given dimension; ‘average’ is the 
simple column-wise mean; standard errors in parentheses.
Source: author's estimates.

Table 2 indicates changes in well-being have been heterogeneous across dimensions. While we see

progress in all dimensions over the full 18 year period, the pace of change is inconsistent. This implies that

when constructing a multidimensional indicator, the relative importance attributed to different dimensions,

or the specific combination of deprivations used to classify households as poor, is likely to matter. With

this in mind, Table 3 estimates multidimensional poverty headcounts based on the same set of eight

variables, applying three alternative identification functions chosen for illustrative purposes. The first,

denoted fe, contains all eight bundles of seven deprivations and thereby corresponds to an equal weight

vector with cut-off k = 7/8. The second function, denoted fu, represents an (extreme) alternative allowing

for significant variation in the magnitudes of the dimensional weights. It was generated pseudo-randomly

and also contains just eight minimal bundles, varying in length (i.e., the number of domains required

to identify a unit as poor) from between 3 and 7 deprivations. The third function, denoted fm, mimics

the structure of the international MPI. Concretely it gives each of the three broad areas (human capital,

housing conditions and asset ownership) an equal weight and, in turn, the dimensions making-up each

area are equally weighted among themselves. Table A2 (Supplementary Material) sets out the dimensional

weights and cut-offs employed as parameters in each of the three identification functions; and Tables A3

to A5 enumerate their respective minimal deprivation bundles.

All the estimates in Table 3 confirm strong progress in poverty reduction over time. Even so, the table

also suggests that multidimensional rates of poverty remain high – e.g., in 2014/15 more than one in five

households were deprived in at least seven of eight dimensions (function fu); and, broadly speaking, at

the author (see also DEEF, 2016). For the exercise in Section 2, the same data is used but the first three dimensions
are excluded.
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Table 3: Estimates of multidimensional poverty headcount, alternative identification functions
1996/97 2002/03 2008/09 2014/15

f H (s.e.) H (s.e.) H (s.e.) H (s.e.)

Equal bundles, fe 54.71 (0.55) 35.10 (0.51) 29.09 (0.44) 20.43 (0.38)
Unequal bundles, fu 61.59 (0.54) 48.96 (0.54) 44.03 (0.48) 34.88 (0.45)
MPI-type bundles, fm 61.71 (0.54) 48.87 (0.54) 44.83 (0.48) 35.31 (0.45)

Notes: Cells indicate the share of households (in %) classified as multidimensionally poor for alternative 
identification functions, as indicated (see text); standard errors in parentheses.
Source: author's estimates.

least one in three were deprived in two of the three broad areas used to replicate the structure of the MPI

(fm). The remainder of this section explores the features of these identification functions, comparing

insights from the perspective of weights and cut-offs versus the perspective of (minimal) bundles.

4.1 Poverty decompositions

An immediate application of characterizing multi-dimensional poverty in terms of bundles is to decompose

the contribution of each minimal deprivation bundle to the overall headcount. Using previous notation,

the absolute contribution of minimal bundle X ∈ T P to H , can be calculated as:

H̃b(X) = π(X) +
∑

Y ∈T NP

(
min[X ≤ Y ]∑

Z∈T P min[Z ≤ Y ]

)
· π(Y ) (7)

which is a direct modification of equation (6), the difference being an adjustment for the contribution of

the non-prime implicants (deprivation bundles that are non-minimal). Indeed, while the prime implicants

are unique, the non-prime implicants are likely to be absorbed by more than one prime implicant.

Consequently, the contribution of minimal bundle X to H includes the sum of the contributions of each

non-prime implicant absorbed by X (as identified by the numerator of the term in parentheses) divided by

the number of prime implicants that absorb the same non-prime implicant (given by the denominator of

the term in parentheses). So, effectively, the contribution of each non-prime implicant is allocated equally

across those prime implicants by which it is absorbed.10 This avoids multiple-counting and ensures:

H =
∑

X∈T P H̃b(X).

What does this look like in practice? Figure 3 plots the above decomposition for the Mozambique data

applying the two identification functions (fe, fu); and Figure A1 (Supplementary Material) does the same

for the MPI-type function (fm), which contains a munch longer set of minimal deprivation bundles. Both

10 Equal weighting is not strictly required; nonetheless, the present decomposition is driven only by the properties
of the relevant Boolean function, which ensures it is consistent across different contexts.
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Figure 3: Decomposition by minimal deprivation bundles

(a) Equal length bundles, fe (b) Unequal length bundles, fu
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Note: The figures depict the absolute contribution of each minimal deprivation bundle (denoted on the 
vertical axis) to the aggregate poverty headcount corresponding to a given identification function, (fu and fe), 
calculated per equation (7); survey starting years are depicted on the horizontal axis.
Source: author's calculations.

panels of the first figure indicate that in the earliest period a single bundle accounted for a relatively large

share of the overall headcount; moreover, in both cases this bundle is highly similar – namely, containing

all deprivations excluding literacy of the household head and ownership of some means of transport.

The plots also indicate different paces of poverty reduction across bundles, even including increases in

the (absolute) share in a few bundles of panel (b). This finding reveals a comparatively slower pace of

improvement in the particular group of dimensions spanned by these bundles (e.g., literacy, sanitation

and roofing), as well as some positive correlation among them.

The above decomposition points to further lines of analysis. One is to re-express (transform) the same

decomposition to give the marginal contribution of each dimension to the headcount. To do so, I

standardize the matrix of points representing all minimal bundles, such that each row sums to one and

the individual cells indicate the proportional contribution of each variable (deprivation dimension) to the

given bundle. Then, multiply the transpose of the earlier decomposition, represented in matrix form, by

the standardized minimal bundles matrix, denoted [B]. That is:

H̃d = [H̃b]′ × [B] (8)

Critically, neither this nor the earlier decomposition depends on the specific (i.e., non-unique) magnitudes

of the weights or cut-off deployed to define the minimal deprivation bundles. Consequently, the present
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Table 4: Dimensional decomposition of multidimensional poverty headcount
(a) Equal, fe (b) Unequal, fu (c) MPI-type, fm

AF New AF New AF New

Literacy 2.38 2.38 10.52 8.65 12.74 6.42
Electricity 2.77 2.77 1.48 3.42 3.48 5.14
Clean water 2.35 2.35 1.10 2.99 2.58 3.74
Sanitation 2.70 2.70 2.89 4.05 3.29 4.84
Roofing 2.70 2.70 13.22 9.39 3.11 4.56
Transport 2.54 2.54 0.82 1.72 3.29 3.48
Information 2.21 2.21 2.81 2.06 2.40 2.44
Durables 2.78 2.78 2.47 3.03 3.97 4.25

Total 20.43 20.43 35.31 35.31 34.88 34.88

Notes: Cells indicate the absolute contribution of each deprivation dimension (in rows) to the
overall multi-dimensional poverty headcount using alternative identification functions and
decomposition procedures; the ‘AF’ decomposition procedure is the Alkire-Foster approach,
as per equation (9); the ‘new’ procedure refers to the approach given by equation (8); equal,
unequal and MPI-type bundles refer to the identification functions fe, fu and fm, respectively
enumerated in Tables A3 – A5.
Source: own estimates.

decompositions are unique to each identification function, which differs from the decompositions in the

Alkire-Foster tradition where the contribution of deprivation dimension j is typically calculated as:

H̃(j) = wjE

(
hi ×

dij∑m
j=1 dijwj

)
(9)

Note this conventional decomposition approach effectively represents the share of units both classified as

poor and deprived in a given dimension, multiplied by the weight attributed to that dimension, implying

the magnitude of the weights play a direct role in the decomposition. Table 4 compares results from

the procedure proposed here (denoted ‘new’), as given by equation (8), and the conventional procedure

(denoted, ‘AF’), using the three identification functions presented above and focussing on data for the

most recent period (2014/15). For the first identification function in column (a), which corresponds to the

full set of deprivation bundles spanning seven dimensions (i.e., a vector of equal weights), there is no

difference in the two decompositions. However, when more complex identification functions are used,

as in columns (b) and (c), the two decompositions differ considerably (in absolute and relative terms)

and do not even yield identical dimensional rankings. Absolute contribution differences are also large

– e.g., in the case of the MPI-type function, the contribution of the literacy dimension falls by around

half (from 12.74 to 6.42) when the new decomposition is applied. This clearly demonstrates some of the

imprecisions that can arise when relying on non-unique weights to explore the properties of different

identification functions.
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The decompositions discussed in this section focus on the (short) set of minimal deprivation bundles.

These are of substantive interest since each dimension in a bundle is non-redundant and thus necessary

to identify a unit as poor. Supersets of these minimal bundles add dimensions that are not required to

identify a unit as poor; thus, these dimensions are effectively given a weight (importance) of zero in the

matrix standardization procedure that feeds into the dimensional decomposition. Nonetheless, the same

decompositions may be applied using the full set of deprivation bundles that are sufficient to identify a

unit as poor (all true points). This leads to an alternative dimensional decomposition, which is derived

from treating each deprivation bundle as being of equal likelihood and, as such, demands a different

interpretation (see further below). For further reference, Table A6 reports dimensional decompositions

by survey year, based on both the minimal deprivation bundles (as above), as well as the full set of

deprivation bundles, in each case using the identification function fu.

4.2 Dimensional power analysis

The second application develops some of the ideas presented above and, in doing so, provides further

intuition. As already noted, the weight vector applied in the Alkire-Foster identification procedure is

conventionally interpreted as being directly informative of the relative importance of each dimension. The

previous discussion suggests this is not likely to be correct, particularly since weights are often non-unique

to the identification function. Instead, and as elaborated in the weighted voting game literature, formal

measures of dimensional power (influence) can be derived from the true points of the threshold function

and the set of prime implicants in particular (e.g., Lucas, 1983; Leech, 2002). Such formal measures of

power not only focus on the unique features of a given function but also combine information about how

the weights and cut-off underpinning a chosen function interact to give different dimensions more or less

effective influence.

To illustrate this procedure, Table 5 compares the underlying weights used to generate the identification

functions fu and fm, against four indexes of dimensional power calculated from the (true) points of

the same functions.11 The first measure is the normalized Banzhaf index (Dubey and Shapley, 1979),

which is widely employed in the context of weighted voting games to indicate the influence of each voter

under a particular set of rules (for further details on metrics of power and their interpretation see Lucas,

1983; Freixas and Gambarelli, 1997). It is calculated as the share of deprivation bundles in which a given

dimension is a ‘swing’ (or pivot), which is simply equal to the number of minimal bundles in which a

dimension appears, divided by the total number of dimensions appearing across all minimal bundles.

Thus, the Banzhaf dimension power for fu is simply the column shares in Table A4.

11 The equal length bundles, function fe, is not analysed here since the power and weight vectors are identical in
this special case.
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Table 5: Alternative metrics of dimensional power for fu and fm
~w Banzhaf Banzhafw Shapley Nucleolus

(a) Unequal bundles, fu:
Literacy 0.297 0.206 0.237 0.339 0.286
Electricity 0.036 0.118 0.101 0.049 0.071
Clean water 0.036 0.118 0.101 0.049 0.071
Sanitation 0.074 0.088 0.080 0.058 0.071
Roofing 0.323 0.206 0.240 0.363 0.286
Transport 0.032 0.088 0.080 0.025 0.071
Information 0.127 0.088 0.080 0.058 0.071
Durables 0.074 0.088 0.080 0.058 0.071

(b) MPI-type bundles, fm:
Literacy 0.333 0.193 0.195 0.379 0.300
Electricity 0.083 0.120 0.119 0.086 0.100
Clean water 0.083 0.120 0.119 0.086 0.100
Sanitation 0.083 0.120 0.119 0.086 0.100
Roofing 0.083 0.120 0.119 0.086 0.100
Transport 0.111 0.108 0.109 0.093 0.100
Information 0.111 0.108 0.109 0.093 0.100
Durables 0.111 0.108 0.109 0.093 0.100

B̄
Notes: Cells indicate the relative influence of each deprivation dimension (in rows) based on 

the identification function represented in Figure 3(b); column w~ is the raw vector of weights; 
reports the (dimension-wise) means of the standardized matrix of minimal deprivation bundles; 
Banzhaf and Shapley are as described in the text; all columns sum to one.
Source: author's estimates.

The second metric is a modified Banzhaf index that accounts for the different lengths of each minimal

bundle and ascribes higher weights to shorter bundles (presuming they are more likely to be realized).

It is derived directly from the standardized matrix of minimal bundles and reports the average weight

of each dimension calculated across all minimal bundles, where the weight of a positive (non-zero)

dimension within each bundle is the inverse of the total number of positive dimensions in the bundle

and zero otherwise. So, this metric is just the weighted counterpart of the conventional Banzhaf metric.

The third power measure is the Shapley value (Shapley, 1953), also frequently used in formal game

theoretic analysis, which represents an estimate of what constitutes a fair distribution (representation)

of the contribution of each dimension to all bundles sufficient to identify a unit as poor (its average

marginal contribution). It is calculated from the characteristic function of the game defined by the

Boolean threshold function, which amounts here to the list of points and the indicator whether they belong

to the set of true points. Finally, the nucleolus is an alternative solution concept in transferable utility

games indicating a stable division of hypothetical pay-offs that minimizes inequities between dimensions
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(players), and which also has been proposed as a relevant power metric (Montero, 2013).

Looking across the columns of Table 5, the exercise shows that although there seems to be a positive

correlation between the vector of weights and the various power measures, there are also important

differences. In the case of fu, all four measures recognise that at least three of the dimensions (sanitation,

information and durables) have identical power (relative importance), despite their unequal weights.

Furthermore, the two Banzhaf power measures, calculated from the minimal bundles, suggest that the

electricity and clean water dimensions have a greater influence (relative importance) than the sanitation

dimension, despite receiving substantially lower weights. Put differently, the ratio of the weights taken

from any two dimensions generally does not correspond to the ratio of the corresponding power indexes.

Similar differences between the powers and weights emerge from the fm function, suggesting that even

in this more conventional case, differences in weights do not map directly to differences in relative

importance. Indeed, under all power indexes excluding the Shapley value, the four housing conditions

dimensions receive a power value that is greater than or equal to the values attributed to the three asset

dimensions, despite the latter receiving larger weights.

In general, the power indexes tend to place less emphasis on differences between weights, often either

allocating the same power values to multiple different weights or at least allocating values that are more

similar in magnitude than the weights themselves. Even so, the power indexes evidently are not identical.

The differences here correspond to the distinctive properties of each index or, effectively, different

conceptualizations of what constitutes power (influence) in game theoretic settings (for elaboration see

Laruelle, 1999). Furthermore, certain power indexes such as the nucleolus have been interpreted as a set

of shadow prices that represent the equilibrium ‘value’ of each dimension under competitive bargaining

(Montero, 2013). The point is that power metrics provide a rigorous means to determine the contribution

of different dimensions to the outcomes of a given identification function, which cannot be determined

directly from the weights (or cut-off). As such, these metrics can be used to evaluate how different

dimensions trade-off against each other in identifying who is poor, which in part addresses the critique of

Ravallion (2011).

To elaborate further on the distinction between dimensional weights and their game theoretic power,

Figure A2(a) employs a set of random weights and cut-offs and plots the weight associated with each

dimension (y-axis) against the Banzhaf power metric (x-axis) calculated for the same dimension from the

given weight/cut-off vector. This immediately confirms that the magnitude of each dimension’s weight is

not always a good guide to its power – in fact, the pair-wise correlation between dimensional weights and

Banzhaf power is approximately zero in this simulation. Figure A2(b) shows the corresponding histogram

of the mean absolute difference between each vector of weights and the associated Banzhaf metrics of

dimensional power, stated in logarithms. This shows that, on average, the absolute difference between

dimensional weights and their Banzhaf power is over 0.4 log units or around 50%, supporting that one
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magnitude does not directly imply the other.

Lastly, the novel insights provided by an analysis of dimensional power are revealed by how measures of

power vary with changes in the cut-off. Remaining with the example of function fm, Figure 4(a) presents

a conventional sensitivity analysis, showing different estimates of the poverty headcount for different

values of k, keeping the weights fixed throughout, and where the original magnitude of the cut-off is

indicated by the vertical line. What is of primary interest, however, is Figures 4(b)-(d), which illustrate

how the Banhzaf powers for different dimensions also vary with k.12 In contrast to plot (a), we find no

smooth or even systematic relationship between changes in the cut-off and the dimensional powers. For

instance, small variations either side of the original cut-off both induce an increase in the estimated power

of the literacy and asset dimensions, but a decrease for all housing dimensions. Also, intuitively, all

dimensional powers are equal when the cut-off is at its maximum. These findings reveal that dimensional

weights do not provide a stable guide to the relative importance of different dimensions; in contrast, their

importance materially depends on the particular value of the cut-off deployed for identification. This

underlines the merit of using the unique characterization from minimal bundles in order to understand

and further analyse the properties of different identification functions.

5 Conclusion

The purpose of this paper was to revisit the way in which identification functions in the Alkire-Foster

tradition are understood. My point of departure was the observation that existing literature treats

differences in the numerical values of the weight and cut-off parameters as a reliable and direct indication

of differences in both who is identified as poor, as well as the relative importance of each dimension.

Indeed, if this were not the case, there would be little to justify why these parameters are thought of as

appropriate objects of public debate.

The main contribution of the present analysis was to show that both of the above conventional interpre-

tations concerning the weight and cut-off parameters cannot be sustained. In light of the equivalence

between the general form of the Alkire-Foster identification function and Boolean threshold functions,

I showed that the weights and cut-offs are merely intermediate inputs that define the set of true points.

Critically, due to the finite nature of the output space, an infinite number of weights and cut-offs will map

to the same identification function. In turn, I demonstrated that identification functions can be uniquely

characterised with respect to the set of minimum deprivation bundles, which is the analogue to minimum

winning coalitions in the weighted voting literature.

The merit of considering identification in terms of minimum bundles, rather than the parameter inputs,

12 Dimensions are aggregated into their groups since each dimension in each group receives the same weight.
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Figure 4: Sensitivity to changes in the cut-off (Boolean threshold)

(a) Poverty headcount (b) Literacy dimension
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(c) Housing dimensions (d) Asset dimensions
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Note: Panel (a) plots the aggregate poverty headcount in Mozambique in 2014/15 for the MPI function (fm), 
varying only the cut-off; panels (b)-(d) plot the Banzhaf powers corresponding to different groups of deprivation 
dimensions for alternative values of the cut-off.
Source: author's calculations.
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was revealed via two applications illustrated with recourse to different types of identification functions, 
including a near replica of the international MPI. The first application proposed a new decomposition, 
showing both the absolute marginal contribution of each minimum bundle to the poverty headcount, as 
well as the contribution of each individual dimension. The advantage of the latter, relative to conventional 
approaches, is that the new decomposition does not depend on the vector of weights and, instead, is fixed 
for each unique identification function. Second, I illustrated how various formal measures of (voting) 
power, taken from game theory, can be applied to evaluate the relative importance of different dimensions. 
Moreover, some of these metrics can be interpreted as dimensional shadow values and thus rigorously 
capture how dimensions are implicitly traded-off against one another in any given function.

In sum, the approach set out here provides a productive and complementary set of tools to analyse 
poverty identification functions. It also points to some directions for further research. For example, either 
minimal deprivation bundles or metrics of power might be used as an intuitive basis for the design of 
identification functions. In the former case, linear programming methods can be used to identify whether 
a set of weights and a cut-off can be derived from a proposed (incomplete) set of true and false points. In 
the latter case, a technical challenge is how best to derive a stable mapping from proposed bundles or 
powers to a particular vector of weights and cut-offs. Second, the application of Boolean theory suggests 
progress may be made in evaluating the robustness of poverty comparisons to differences in identification 
functions, not via direct changes to weights or the cut-off but rather to the minimal bundles themselves.
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Appendix: Boolean threshold functions

Definition 5.1. A Boolean function on m variables is a function on Bm into B, where B = {0, 1}, and
Bm is the m-fold cartesian product {0, 1}m.

This definition indicates the logical nature of Boolean functions, namely that they map a vector of m
binary variable inputs (known as literals) into a scalar that takes the value of either zero or one, which
refer to (Boolean) FALSE and TRUE outputs respectively. Thus:

Definition 5.2. A point X = (x1, x2, . . . , xm) is a true point of the Boolean function f if f(X) = 1;
respectively, a false point obtains if f(X) = 0. In turn, T (f) denotes the set of true points; and the set of
false points is denoted F(f).

Definition 5.3. A Boolean function f in m variables is a positive threshold function if there exist m
positive weights, ~w ∈ Rm+ , and a threshold or cut-off 0 < k ≤

∑m
j=1 ωj , such that for any point X:

f(X) =

{
1 if

∑m
j=1wjxj ≥ k

0 otherwise
(10)

Whilst somewhat trivial, the above definitions highlight that a given Boolean function effectively partitions
the space of feasible points, given by all 2m possible combinations of variable inputs (literals), into
members of the true or false point sets. And the weights and cut-off used in Boolean threshold functions
merely constitute the partitioning mechanism, as illustrated by the truth table set out in Appendix Table
A1 (see above). Also, since both the input and output space of a Boolean function is finite, the number of
different feasible Boolean threshold functions in m variables must be finite, taking strict upper bound
22

m
. (Since at least Dedekind, counting the number of different kinds of Boolean functions remains an

active area of research).13 Put differently, while (~w; k) can take an infinite number of values (being reals),
some different choices of (~w; k) will be consistent with the same Boolean threshold function.

Given the above, it is sensible to look at the output vector in order to characterize Boolean functions.
Indeed, as Definition 5.2 suggests, the set of true points can uniquely distinguish between different
positive Boolean functions:

Definition 5.4. Two Boolean functions f and g are said to be identical when their associated truth tables
are identical. Namely: if, ∀X ∈ Bm : f(X) = g(X) then T (f) = T (g)⇔ f = g.

The drawback of using truth tables to characterise a Boolean (threshold) function is that, in all but the
most simple instances, the number of true points (#T ) can be large. Nonetheless, further properties
of Boolean functions indicate that even complex functions can be given a shorter and unique summary
representation. To see this, some further definitions are required.

Definition 5.5. A minterm on Bm is an elementary conjunction containing exactly m literals, which
takes the value one (TRUE) at a unique point in the input space. So, given a Boolean function f evaluated
at point X , if f(X) = 1, then the corresponding minterm is: φf (X) = (

∧
j|xj=1 xj

∧
k|xk=0 x̄k) = 1,

where x̄k = 1− xk indicates the complement of xk.
13 Muroga et al. (1970) finds that the number of unique positive Boolean threshold functions in 5 variables is just

119, but increases exponentially with the number of variables, being already more than 2 million for 8 variables.
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Definition 5.6. A Boolean function f is positive (and monotonic) if for two points X and Y in m
variables , f(X) ≥ f(Y ) whenever ∀j ∈ {1, . . . ,m} : xj ≥ yj .

From Definition 5.5, it follows that the disjunction (union) of all minterms that define the true points
of a function f provides a complete representation of the same function. This is known as the minterm
disjunctive normal form (DNF) of f . Taking this further, where f is positive, then minterms will often
encode redundant information. And since Definition 5.6 indicates that positive Boolean functions cannot
be switched to FALSE by switching any individual literal from zero to one, it must be the case that
any minterm of a positive function that defines a true point can be represented without reference to any
variables that enter in complemented form. That is, if f is a positive function, then:

∀ X ∈ T (f) :
∧

j|xj=1

xj
∧

k|xk=0

x̄k︸ ︷︷ ︸
φf (X)

=
∧

j|xj=1

xj︸ ︷︷ ︸
φ+f (X)

= 1 (11)

Without need for proof, this proposition implies the standard result that every positive Boolean function
can be represented by a DNF containing only positive implicants (denoted, φ+f ).

The final step is to note that at least some positive implicants can be superfluous to the representation of
positive monotonic Boolean threshold functions. To see this, again consider two true points X and Y of a
positive function f , meaning f(X) = f(Y ) = 1; so, if ∀j : xj ≤ yj , then the elementary conjunction of
positive points in X provides a shorter but nonetheless sufficient representation of the truth value of both
points X and Y , implying φ+(Y ) is not required to represent the function. Thus:

Definition 5.7. An implicant of a Boolean function f is said to be non-prime if it is absorbed by at
least one other implicant of f . Thus, the set of non-prime implicants corresponds to a proper subset
of true points: T NP = {Y ∈ T (f) | ∃X ∈ T (f)\Y : min∀j(xj ≤ yj) = 1} ⊂ T .14 And the set of
prime implicants contains those not absorbed by any other implicant, corresponding to the set of points:
T P = T \T NP .

14 Equivalently, we say implicant φ+(X) absorbs implicant φ+(Y ) if the set of indices pertaining to positive
literals in X is a proper subset of the indices pertaining to positive literals in Y – i.e., define the set of indices
M = {1, ...,m}; and, the set of indices pertaining to positive literals of point X , MX = {j ∈M : xj = 1}. So,
X absorbs Y ⇐⇒ MX ⊂MY .
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A Supplementary material

Table A1: Enumeration of bundles in five dimensions
Bundles Row 1 Row 2

b d1 d2 d3 d4 d5 π (a) (b) (c) (a) (b) (c)

1 0 0 0 0 0 0.089 0 0 0 0 0 0
2 1 0 0 0 0 0.082 0 0 0 0 0 0
3 0 1 0 0 0 0.021 0 0 0 0 0 0
4 1 1 0 0 0 0.125 0 0 0 0 0 0
5 0 0 1 0 0 0.107 0 0 0 0 0 0
6 1 0 1 0 0 0.048 0 0 0 1 1 1
7 0 1 1 0 0 0.006 0 0 0 0 0 0
8 1 1 1 0 0 0.024 0 0 0 1 1 1
9 0 0 0 1 0 0.000 0 0 0 0 0 0
10 1 0 0 1 0 0.000 0 0 0 0 0 0
11 0 1 0 1 0 0.000 0 0 0 0 0 0
12 1 1 0 1 0 0.000 0 0 0 0 0 0
13 0 0 1 1 0 0.000 0 0 0 1 1 1
14 1 0 1 1 0 0.000 0 0 0 1 1 1
15 0 1 1 1 0 0.000 0 0 0 1 1 1
16 1 1 1 1 0 0.000 1 1 1 1 1 1
17 0 0 0 0 1 0.001 0 0 0 0 0 0
18 1 0 0 0 1 0.008 0 0 0 0 0 0
19 0 1 0 0 1 0.006 0 0 0 0 0 0
20 1 1 0 0 1 0.053 0 0 0 0 0 0
21 0 0 1 0 1 0.017 0 0 0 1 1 1
22 1 0 1 0 1 0.039 0 0 0 1 1 1
23 0 1 1 0 1 0.012 0 0 0 1 1 1
24 1 1 1 0 1 0.115 1 1 1 1 1 1
25 0 0 0 1 1 0.000 0 0 0 0 0 0
26 1 0 0 1 1 0.007 0 0 0 0 0 0
27 0 1 0 1 1 0.003 0 0 0 0 0 0
28 1 1 0 1 1 0.047 1 1 1 1 1 1
29 0 0 1 1 1 0.005 0 0 0 1 1 1
30 1 0 1 1 1 0.017 1 1 1 1 1 1
31 0 1 1 1 1 0.016 1 1 1 1 1 1
32 1 1 1 1 1 0.151 1 1 1 1 1 1



Table A2: Dimension-specific weights and cut-offs for alternative identification functions
Dimension fe fm fu

Literacy 0.125 0.333 0.297
Electricity 0.125 0.083 0.036
Clean water 0.125 0.083 0.036
Sanitation 0.125 0.083 0.074
Roofing 0.125 0.083 0.323
Transport 0.125 0.111 0.032
Information 0.125 0.111 0.127
Durables 0.125 0.111 0.074

k 0.875 0.667 0.668

Notes: Against each deprivation dimension, cells indicate the respec-
tive weights used for identification; k is the cut-off; column names
indicate the identification function – namely: fe is the equal weights
function, fm is the MPI-type function, and fu is the unequal weights
function.
Source: author's estimates.

Table A3: Minimal deprivation bundles for function fe (equal length bundles)
id. d1 d2 d3 d4 d5 d6 d7 d8 Sum

128 1 1 1 1 1 1 1 0 7
192 1 1 1 1 1 1 0 1 7
224 1 1 1 1 1 0 1 1 7
240 1 1 1 1 0 1 1 1 7
248 1 1 1 0 1 1 1 1 7
252 1 1 0 1 1 1 1 1 7
254 1 0 1 1 1 1 1 1 7
255 0 1 1 1 1 1 1 1 7

Sum 7 7 7 7 7 7 7 7 56

Notes: ‘id.’ is the bundle identifier (row number); columns d1, . . . , d 8 indicate the deprivation 
dimensions, listed in the same order as in Table 2; ‘Sum’ is the row or column count of necessary 
deprivations.
Source: author's estimates.



Table A4: Minimal deprivation bundles for function fu (unequal length bundles)
id. d1 d2 d3 d4 d5 d6 d7 d8 Sum

24 1 1 1 0 1 0 0 0 4
26 1 0 0 1 1 0 0 0 3
52 1 1 0 0 1 1 0 0 4
54 1 0 1 0 1 1 0 0 4
82 1 0 0 0 1 0 1 0 3
146 1 0 0 0 1 0 0 1 3
223 0 1 1 1 1 0 1 1 6
240 1 1 1 1 0 1 1 1 7

Sum 7 4 4 3 7 3 3 3 34

Notes: ‘id.’ is the bundle identifier (row number); columns d1, . . . , d 8 indicate the deprivation 
dimensions, listed in the same order as in Table 2; ‘Sum’ is the row or column count of necessary 
deprivations.
Source: author's estimates.



Table A5: Minimal deprivation bundles for function fm (MPI-type bundles)
id. d1 d2 d3 d4 d5 d6 d7 d8 Sum

32 1 1 1 1 1 0 0 0 5
48 1 1 1 1 0 1 0 0 5
56 1 1 1 0 1 1 0 0 5
60 1 1 0 1 1 1 0 0 5
62 1 0 1 1 1 1 0 0 5
80 1 1 1 1 0 0 1 0 5
88 1 1 1 0 1 0 1 0 5
92 1 1 0 1 1 0 1 0 5
94 1 0 1 1 1 0 1 0 5
104 1 1 1 0 0 1 1 0 5
108 1 1 0 1 0 1 1 0 5
110 1 0 1 1 0 1 1 0 5
116 1 1 0 0 1 1 1 0 5
118 1 0 1 0 1 1 1 0 5
122 1 0 0 1 1 1 1 0 5
144 1 1 1 1 0 0 0 1 5
152 1 1 1 0 1 0 0 1 5
156 1 1 0 1 1 0 0 1 5
158 1 0 1 1 1 0 0 1 5
168 1 1 1 0 0 1 0 1 5
172 1 1 0 1 0 1 0 1 5
174 1 0 1 1 0 1 0 1 5
180 1 1 0 0 1 1 0 1 5
182 1 0 1 0 1 1 0 1 5
186 1 0 0 1 1 1 0 1 5
200 1 1 1 0 0 0 1 1 5
204 1 1 0 1 0 0 1 1 5
206 1 0 1 1 0 0 1 1 5
212 1 1 0 0 1 0 1 1 5
214 1 0 1 0 1 0 1 1 5
218 1 0 0 1 1 0 1 1 5
226 1 0 0 0 0 1 1 1 4
255 0 1 1 1 1 1 1 1 7

Sum 32 20 20 20 20 18 18 18 166

Notes: ‘id.’ is the bundle identifier (row number); columns d1, . . . , d 8 indicate the deprivation 
dimensions, listed in the same order as in Table 2; ‘Sum’ is the row or column count of necessary 
deprivations.
Source: author's estimates.



Table A6: Decomposition of multidimensional poverty headcount, function fu
Minimal deprivation bundles All deprivation bundles

1996/97 2002/03 2008/09 2014/15 1996/97 2002/03 2008/09 2014/15

Literacy 11.18 10.84 10.29 8.65 6.00 5.86 5.69 4.96
Electricity 7.12 4.92 4.38 3.42 8.56 7.24 6.77 5.49
Clean water 6.76 4.39 3.96 2.99 7.53 5.42 5.09 3.89
Sanitation 6.83 5.39 5.07 4.05 8.52 7.17 6.68 5.19
Roofing 14.06 12.38 11.59 9.39 8.36 7.10 6.71 5.55
Transport 3.23 2.36 1.93 1.72 7.26 4.74 3.76 3.25
Information 5.99 3.63 3.19 2.06 7.24 4.59 4.11 2.72
Durables 6.55 4.96 4.41 3.03 8.25 6.76 6.03 4.26

Total 61.71 48.87 44.83 35.31 61.71 48.87 44.83 35.31

Notes: Cells indicate the absolute contribution of each deprivation dimension (in rows) to the multi-dimensional 
poverty headcount using alternative decomposition procedures, namely that based on the set of minimal deprivation 
bundles and that based on all deprivation bundles that are true points of the function fu.
Source: author's estimates.



Figure A1: Decomposition by minimal deprivation bundles, function fm (MPI-type)
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Note: The figure depicts the absolute contribution of each minimal deprivation bundle (denoted on the 
horizontal axis) to the aggregate poverty headcount corresponding to the fm identification function; survey 
starting years are depicted on the vertical axis.
Source: author's calculations.

Figure A2: Comparison of random dimensional weights and powers

(a) Weights vs. Banzhaf power (b) Mean absolute difference
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Note: Panel (a) plots randomly-drawn dimensional weights against their Banzhaf powers; panel (b) plots the 
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also drawn randomly, not shown.
Source: author's calculations.
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