

Does Training Location Matter? Evidence from a Randomized Field Experiment in Rural Indonesia

Ayu Pratiwi Faculty of Health and Well-being Turku University of Applied Sciences Aya Suzuki Graduate School of Frontier Sciences the University of Tokyo

Summary

- RCT in training form in rural Indonesia to promote the adoption of agricultural technology
- Introducing training location heterogeneity (hometown, intra-island, inter-island location)
- Evaluation post-training: knowledge-level increased across all location, but only inter-island training spurred adoption
- due to intensified and strengthened social network with formal and informal networks
- Spillover is detected from training participants to nonparticipants
- Key takeout: recreation is important?

Literature Review: Interplay of formal & informal Network is needed

- Technology is the source of growth (Romer 1986, 1989)
 - Developing countries are lagged behind
- Formal institutions in developing nations are lacking the capacity to promote technology
 - i.e. educational institutions, extension services
- Informal institutions can complement
 - i.e. social learning from neighbors, informal network in the rural area (Conley & Udry, 2010; Munshi 2004)
- Exploring the interplay of formal and informal network in promoting the technology?

Literature Review: Formal Network

- Formal Sources: Agricultural Extension
- Effects of extension:
 - Social rate of return to investment in R&D is high (Alston, 2010)
 - Mixed results (Evenson, 1997)
 - Negative results, failing and outdated in Africa (Rivera et al, 2004)
- New approach of extension:
 - 1. Training & Visit Extension
 - Positive effects (Feder & Slade, 1993), no effect in longer period (Hussain et al, 1994; Gautam, 2000)
 - 2. Farmers Field School (FFS)
 - Positive effects (Rola et al, 2002); limited or no effects (Feder et al, 2004; Quizon et al 2001)

Literature Review: Informal Network

- Critics to formal extension:
 - Target farmers are not representative (Boahene et al, 1999)
 - Lack of accountability, fiscal sustainability issues (Feder et al, 2001)
- Informal Sources: Rural social network
 - Farmers who have limitation to access formal sources can rely on informal network (Lyon, 2003)
 - Learning effects from peers (Conley & Udry, 2010; Foster & Rosenzweig, 2010) and extension official (Tefera & Sterk, 2010)
 - Critics: difficult to measure quantitatively, difficult to precisely estimate its impacts due to heavy influence from random effects
- Recently: social learning in formally organized setting such as workshop, where information exchanges take place (Dalsgaard et al 2005; Fitzpatrick et al 2008)

6/13/2018

Motivation of the Research

- Not much are done at the combined effects of both formal and informal institutions on knowledge diffusion and adoption in the rural area
 - This paper aims to fill this gap
- Differentiation from current literatures:
 - 1. Training participation is randomized, allowing for rigorous analysis
 - 2. Formal training is carried out in the different locations to see the separate effects of training and location on diffusion and adoption
 - 3. Various informal network is examined as a proxy for informal institutions

Coffee and cocoa in Indonesia

Estimated Cocoa Production in 2011/2012			Top 5 Coffee Bean Producers in 2013		
Country	Annual Production (in tonnes)		Country	Annual Production (in bags of 60 kg)	
1. Ivory Coast	1,410,000		1. Brazil	49,152,000	
2. Ghana	860,000		2. Vietnam	27,500,000	
3. Indonesia	480,000		3. Indonesia	11,667,000	
4. Nigeria	210,000		4. Colombia	11,000,000	
Source: International Cocoa Organization (ICCO)			5. Ethiopia	6,600,000	

Source: International Coffee Organization

- 1.3 million hectares of coffee plantation and 1.5 million hectares of cocoa plantations (source: Reuters Factbook)
- More than 90 percent of these are small-scale producers (source: ICCRI data)

Fieldwork site: Tanggamus district, Lampung

Major coffee and cocoa producer Total Area: 2,731.61 km² Population: 548.728 (in 2013) Density : 200,88 people/km² Total Farmland: 91.620,64 Ha

Randomization Method

(~80% response rate)

Research Timeline

Agricultural Training Intervention

- Total 312 household from 14 villages (16 farmers group)
- Randomly select 156 people to undertake 3 days training
- 120 people (~80%) showed up for the training

- What location represents:
 - 1. Distance

2. Field trip component i.e. more matured and developed in terms of coffee and cocoa production, more developed as an area, extension services are more advanced

6/13/2018

Agricultural Training Intervention

 In-class training on coffee (day 1) and cocoa (day 2) cultivation, plant diversification, and agriculture technology, followed by 10Qs quiz

2. Pilot farm visit in each location

Same training is given by same trainers regardless of location

2018 Nordic conference on development economics

Agricultural Training Intervention

training only

3. Participants bonding and ice-breaking (singing, quiz, games) and <u>visit</u> touristy places

4. Facilitate contact and learning between trainers and "successful" farmers in each location ... however, personal experience and exposure may be different across different training group

Agricultural technology promoted in training

Problem	Extreme Weather	Old Plantation	Less Productivity	Less Sustainability
Purpose	Water and Soil Conservation	Rehabilitation	More Productivity	Productivity & Sustainability
Technique	Sediment Pit (Dead-end Trench)	Side-cleft and Bud Grafting	Chemical Fertilizer (NPK/Urea)	Organic Fertilizer (Compost,

Conceptual Framework

Hypotheses

Hypothesis 1:

Training carried out at the **most remote location** is most effective for promoting diffusion and adoption due to stronger social learning effects.

Hypothesis 2:

Information spillover from training participants to non-training participants are **present**, which helps spurs the diffusion and adoption of technologies to non participants

Increased network with extension official

Local Average Treatment Effects (LATE) Random Effects Instrumental Variable Model (ITT ~TOT)

1. Effects of Training on Technology Diffusion

Instrumented by Invitation (Lottery)Know_{i,t} \bigwedge = $\alpha_1 + \beta_1 Training_i * Location * Post2013$ + $\beta_2 Training_i + \beta_3 Post2013 + \beta_4 Location + w_i + u_i$

2. Effects of Training on Technology Adoption

 $\begin{array}{l} \text{Instrumented by Invitation (Lottery) to different location} \\ Adopt_{i,t} \\ = \alpha_1 + \beta_1 Training_i * Location * Post2013 \\ + \beta_2 Training_i + \beta_3 Post2013 + \beta_4 Location + w_i + u_i \\ & \text{if } Know_{i,t} = 1 \end{array}$

Local Average Treatment Effects (LATE) Random Effects Instrumental Variable Model (ITT ~TOT) 3. Effects of Social Network on Diffusion and Adoption Social Network_{i,t} $= \alpha_1 + \beta_1 Training_i^*$ Location * Post2013

+ $\beta_2 Training_i + \beta_3 Post2013 + \beta_4 Location + w_i + u_i$

4. Spillover from Participants to Non-participants

Instrumented by network with people who were invited to the training

Know_{*i*,*t*} = $\alpha_1 + \beta_1 Network with Participants * Post2013$ + $\beta_2 Network with Participants + \beta_3 Post2013 + w_i + u_i$ if Non – training Participants = 1

Findings: Tech Diffusion and Adoption

		() S	
	Est		
	1 Acad		
	Rec a		
Contraction of the			

	Water and Soil Conservation	Rehabilitation Technique	Chemical Fertilizer	Organic Fertilizer
Training * Post2013	Diffusion 0.151** (0.0654)	Diffusion 0.0989** (0.0488)	×	×
Training * Post2013 * Inter-island	Adoption 0.185** (0.0923)	***, **, and *	signifies statistical significance at t	.he 1%, 5%, and 10%

Training in general has increased participants' knowledge, but only inter-island training spurs adoption...

Findings: Social Network

	All Training Participants All Farmers						
	No of Advice Network from Same Training Group	No of Advice Network from Different Training Group	No of Advice Network from Non participants	Knowing Extension Agents	Having Frequent Contact with Extension Agents		
Training * Post2013* Inter-island	×	×	×	0.195* (0.0947)	0.314** (0.135)		
Training * Post2014 * Inter-island	×	×	1.385* (0.748) ***,**,;	N/A and * signifies statistical s	N/A significance at the 1%, 5%, and 10%		
du	e to strength	ened and enla	arged social	network.			
6/13/2018 2018 Nordic conference on development economics					21		

Findings: Spillover from Training Participants

	All Farmers			Non-training Participants	
	Organic Fertilizer	Chemical Fertilizer	Rehabilitation Technique	Chemical Fertilizer	Rehabilitation Technique
Network with Training Participants * Post 2013	×	×	×	Adoption 0.0502* (0.0293)	×
Network with Training Participants	×	×	Diffusion 0.0261** (0.0108) Adoption 0.0181* (0.0109)	Adoption 0.0502* (0.0292)	Diffusion 0.0281** (0.0136)
Network with Training Participants * Post 2013 * Inter- island	Adoption 0.122* (0.0641)	Adoption 0.149** (0.0692)	×	×	×

....Spillover to non-participants is also present...

6/13/2018

2018 Nordic conference on development economics

Revisiting the hypotheses...

Hypothesis 1:

Supported

Training carried out at the **most remote location** is most effective for promoting diffusion and adoption due to stronger social learning effects.

Training regardless of location has improved knowledge, but only training held in the most remote location has spurred adoption due to stronger informal network

Hypothesis 2:

✓ Supported

Information spillover from training participants to non-training participants is **present**, which helps spurs the diffusion and adoption of technologies to non participants

Training participants diffuse fertilizer adoption to non-participants, interisland training participants diffuse fertilizer adoption to training participants in general

The story altogether...

- At the beginning, formal institution is important to raise awareness regarding agricultural practices
 - Formal training is needed to improve knowledge, but adoption takes much more
- But for more effective dissemination strategy, informal network helps hasten the process
 - Adoption requires encouragements from peers and experts
 - Recreations can help motivate farmers to adopt (revised expected returns from agriculture upon returning), positive Hawthorne effects
 - Spillover is detected from training participants to nonparticipants

THANK YOU Q&A?

References...

- Romer, P.M., 1990. Endogenous technological change. Journal of political Economy, 98(5, Part 2), pp.S71-S102.
- Romer, P.M., 1986. Increasing returns and long-run growth. Journal of political economy, 94(5), pp.1002-1037.
- CONLEY, T. G. & UDRY, C. R. 2010. Learning about a new technology: Pineapple in Ghana. The American Economic Review, 100, 35-69.
- MUNSHI, K. 2004. Social learning in a heterogeneous population: technology diffusion in the Indian Green Revolution. Journal of Development Economics, 73, 185-213.
- Alston, J.M., 2010. The benefits from agricultural research and development, innovation, and productivity growth.
- Evenson, R., 1997. The economic contributions of agricultural extension to agricultural and rural development. Improving agricultural extension, pp.27-36.
- Rivera, W.M., 2004. Extension reform for rural development: Case studies of international initiatives. Agriculture & Rural Development Department, World Bank
- Feder, G. and Slade, R., 1993. Institutional reform in India: The Case of agricultural extension. *The Economics of Rural Organizations*, pp.530-542.
- Hussain, S.S., Byerlee, D. and Heisey, P.W., 1994. Impacts of the training and visit extension system on farmers' knowledge and adoption of technology: Evidence from Pakistan. Agricultural Economics, 10(1), pp.39-47.
- Gautam, M., 2000. Agricultural extension: The Kenya experience: An impact evaluation. World Bank Publications.
- Rola, A.C., Jamias, S.B. and Quizon, J.B., 2002. Do farmer field school graduates retain and share what they learn? An investigation in Iloilo, Philippines. In Farmer field schools: Emerging issues and challenges. International Learning Workshop on Farmer Field Schools (FFS). Yogyakarta (Indonesia). 21-25 oct 2002. (p. 261). International Potato Center.
- Feder, G., Murgai, R. and Quizon, J.B., 2004. The acquisition and diffusion of knowledge: The case of pest management training in farmer field schools, Indonesia. Journal of agricultural economics, 55(2), pp.221-243.
- Quizon, J., Feder, G. and Murgai, R., 2001. Fiscal sustainability of agricultural extension: The case of the farmer field school approach. Journal of International Agricultural and Extension Education, 8(1), pp.13-24.
- Boahene, K., Snijders, T.A. and Folmer, H., 1999. An integrated socioeconomic analysis of innovation adoption: the case of hybrid cocoa in Ghana. Journal of Policy Modeling, 21(2), pp.167-184.
- Feder, G., Willett, A. and Zijp, W., 2001. Agricultural extension: Generic challenges and the ingredients for solutions. In Knowledge generation and technical change (pp. 313-353). Springer, Boston, MA.
- Lyon, F., 2003. Community groups and livelihoods in remote rural areas of Ghana: How small-scale farmers sustain collective action. Community Development Journal, 38(4), pp.323-331
- Foster, A.D. and Rosenzweig, M.R., 2010. Microeconomics of technology adoption. Annu. Rev. Econ., 2(1), pp.395-424
- Tefera, B. and Sterk, G., 2010. Land management, erosion problems and soil and water conservation in Fincha'a watershed, western Ethiopia. Land Use Policy, 27(4), pp.1027-1037.
- Dalsgaard, Jens Peter Tang, et al. "INTRODUCING A FARMERS'LIVESTOCK SCHOOL TRAINING APPROACH INTO THE NATIONAL EXTENSION SYSTEM IN VIETNAM." (2005).
- Fitzpatrick, Patricia, A. John Sinclair, and Bruce Mitchell. "Environmental Impact Assessment Under the Mackenzie Valley Resource Management Act: Deliberative Democracy in Canada's North?." Environmental management 42.1 (2008): 1-18.