A role for universal pension? Simulating universal pensions in Ecuador, Ghana, Tanzania and South Africa

Maria Jouste (University of Turku, UNU-WIDER), Pia Rattenhuber (UNU-WIDER)

NCDE Conference, June 2018, Helsinki

Introduction

Design of universal pension reforms

Main findings

Conclusion

<ロト < 回 ト < 巨 ト < 巨 ト ミ の Q (C 2/19

Motivation

Sustainable Development Goals highlight the importance of social protection and domestic revenue mobilization

- Yet, many developing countries do not provide social security for old-age even if the dependency ratio of the elderly has increased
- Affordability of social protection is a challenge in developing countries

Microsimulation model is a capable tool for analysing (first-round) effects of tax-benefit policies on poverty and inequality

- Static tax-benefit microsimulation models are common in developed countries but rarely available in developing countries
- Only few previous studies use microsimulation for comparing effects of (universal) social protection policy across different developing countries

This study

- We use four novel, cross-country comparable, static tax-benefit microsimulation models to evaluate ex ante a universal pension in four developing countries (Ecuador, Ghana, Tanzania and South Africa)
 - for more information about the models, see the SOUTHMOD project page
- Three different universal pension reform scenarios
- Estimate **distributional measures** from simulated data:
 - 1. The headcount index (FGT(0))
 - 2. The poverty gap index (FGT(1))
 - 3. Gini coefficient
- Compare estimates to status quo and between different reform scenarios
- Analyse costs of interventions

Introduction

Design of universal pension reforms

Main findings

Conclusion

<ロト < 回 > < 巨 > < 巨 > < 巨 > 三 の Q @ 5/19

Why choose four countries for analysis?

	Economic status	Social protection	Dependency ratios
GH	Lower middle	Low	$\hat{\mathbf{A}}$
ΤZ	Low	Low	₽°°, x^
EC	Upper middle	High	$\hat{\mathbf{G}}$
SA	Upper middle	High	$\delta \sim 0^{\circ}$, $\delta \sim 0^{\circ}$

Table 1: Economic and demographic development across countries

- All countries have similar interests and concerns regarding social protection
- SOUTHMOD microsimulation models
 - Allow detailed implementation of different reform scenarios thanks to versatility of the EUROMOD platform
 - Allow comparison across countries

Existing pension schemes

- ▶ GH: Only contributory based pension schemes with low coverage
- TZ (mainland): Only contributory pension schemes with low, fragmented coverage
- EC: Means-tested pension scheme and contributory pension system, combined coverage of 62% of population aged 65 years or older (HelpAge International, 2017)
- SA: Minimum pension scheme which is targeted (means-tested) to poor citizens with coverage of 74% of population aged 60 years or older (HelpAge International, 2017); also contributory schemes for workers

Design of universal pension reform

- Three different universal pension reforms:
 - R1 (generous, national): 60 years or older and benefit amount is 50% of the national poverty line (generous benefit and wide coverage)
 - 2. **R2** (small, national): 70 years or older and benefit amount is 50% of the food poverty line (limited benefit and low coverage)
 - 3. **R3** (WB): 60 years or older and benefit amount is 50% of the World Bank USD 3.10 a day line (internationally more comparable)
- The largest benefit amount in R1 in GH, EC and SA, and in R3 in TZ
- For Ecuador and South Africa we compare reforms for both maintaining and abolishing existing targeted pension systems
 - if maintaining, universal pension is given as a top-up for existing pension
 - if abolishing, everyone gets only universal pension

Introduction

Design of universal pension reforms

Main findings

Conclusion

<ロト < 回 > < 臣 > < 臣 > 王 の Q (C 9/19

Coverage rates under reform 1 (in %)

	GH	ΤZ	EC	SA
Seniors (60+) out	6.6	5.8	8.3	8.1
of total population				
Recipients out of	06.0	99.4		
age group (60+)	90.9			
			Abolish minimum pension	
Recipients out of			81.3	100.0
age group (60+)				
			Top-up universal pension	
Recipients out of			E1 2	14.4
age group (60+)			51.5	14.4

Notes: Recipients under R1 (benefit for seniors age 60 or older).

Table 2: Coverage rates of the universal pension. Source: Authors' own calculations.

Poverty - Ghana and Tanzania

Figure 1: Poverty estimates for Ghana and Tanzania. Source: Authors' own calculations.

Inequality – Ghana and Tanzania

Inequality is going down, especially among the elderly population

- In GH, R1 (generous, national) decreases Gini coefficient by 3.4% in the recipient group and 1.2% in total population (status quo: 0.44 and 0.43)
- In TZ, R3 (WB) inequality among elderly population is lower than in total population under the status quo (0.37 vs 0.42) and it is going down by 4% in the recipient group

Poverty and inequality – Ecuador and South Africa: abolishing existing schemes

▶ In EC, when abolishing the existing targeted pension scheme,

- R1 (generous, national) reduces poverty and inequality of the total population and the recipients group (in rec. group FGT(0) 0.18 vs 0.21, Gini 0.52 vs 0.53)
- R2 (small, national) increases both poverty and inequality
- R3 (WB) has almost no impact
- ► In SA,
 - All reforms increase poverty and inequality (in rec. group for R1 (generous, national) FGT(0) 0.61 vs 0.46, Gini 0.70 vs 0.65)
 - Due to loosely-targeted and more generous existing scheme

Poverty and inequality – Ecuador and South Africa: maintaining existing schemes

- In EC, when maintaining existing pension scheme and comparing top-up universal pension to existing pension scheme
 - Both poverty and inequality is decreased in all reforms
 - The existing means-tested pension does not capture all poor elderly citizens
 - Poverty and inequality decrease most in R1 (generous, national) in the recipient group (headcount poverty by 19%, poverty gap index by 33% and Gini coefficient by 2.9%)
- ► In SA,
 - All reforms have almost no impact on poverty and inequality
 - the top-up universal pension is going to citizens who are not poor since existing targeted pension has high coverage among poor elderly

Expenditure analysis

	GH	ΤZ	EC	SA
As share of GDP (in %)	0.4 - 1.2	0.3 - 1.3	0.4 - 1.6	0.2 - 0.9
As share of government revenue (in %)	2.2 - 7.4	2.1 - 8.7	0.2 - 1.0	0.5 - 2.3
As share of total direct tax receipt (in %)	5.6 - 18.4	7.8 - 33.1	3.8 - 14.8	1.0 - 5.2

Notes: For Ecuador and South Africa, estimates for scenario where existing targeted pension is abolished.

Table 3: Expenditure on the universal pension. Source: Authors' own calculations.

Introduction

Design of universal pension reforms

Main findings

Conclusion

<ロト < 部 > < 言 > く 言 > こ > つ < で 16 / 19

Conclusion

- Unsurprisingly, we find that both poverty and inequality decrease in GH and TZ where existing schemes reach very few elderly
- In EC and SA results depend on the coverage and generosity of existing pension schemes
- The costs of the proposed reforms vary considerably between countries and reform scenario; costs are larger in GH and TZ where domestic revenue mobilization capacity is lower than in EC and SA
- Caveats:
 - We do not provide revenue-neutral reforms
 - country-specific studies
 - Harmonisation of models is an ongoing process
 - Models are static, we abstract from behavioural changes

References I

- Adu-Ababio, K., R. Osei-Darko, J. Pirttilä, and P. Rattenhuber (2017). SOUTHMOD country report Ghana 2013-2016: GHAMOD v1.0.
- Bertrand, M., S. Mullainathan, and D. Miller (2003). Public Policy and Extended Families : Evidence from Pensions in South Africa. World Bank Economic Review 17(1), 27–50.
- Case, A. and A. Deaton (1998). Large Cash Transfers to the Elderly in South Africa. *The Economic Journal 108*(450), 1330–1361.
- Dethier, J.-J., P. Pestieau, and R. Ali (2011). The impact of a minimum pension on old age poverty and its budgetary cost. Evidence from Latin America. *Revista de Economia del Rosario 14*(2), 135–163.
- Gasparini, L., J. Alejo, F. Haimovich, S. Olivieri, and L. Tornarolli (2010). Poverty among older people in Latin America and the Caribbean. *Journal of International Development* 22(2), 176–207.
- HelpAge International (2017, April). Social Pensions Database.
- Jara, H. X., M. Cuesta, M. Varela, and C. Amores (2017). SOUTHMOD Country report Ecuador 2011-2016: ECUAMOD v1.0.
- Leyaro, V., E. Kisanga, M. Noble, G. Wright, and D. McLennan (2017). SOUTHMOD country report Tanzania 2012, 2015: TAZMOD v1.0.

References II

- Niño-Zarazúa, M., A. Barrientos, S. Hickey, and D. Hulme (2012). Social Protection in Sub-Saharan Africa: Getting the Politics Right. World Development 40(1), 163–176.
- Olivera, J. and B. Zuluaga (2014). The Ex-ante Effects Of Non-Contributory Pensions in Colombia and Peru. *Journal of International Development 26*(7), 949–973.
- Ortiz, I., F. Durán-Valverde, K. Pal, C. Behrendt, and A. Acuña-Ulate (2017).
 Universal Social Protection Floors: Costing Estimates and Affordability in 57
 Lower Income Countries. ESS Extension of Social Security Working Paper No.
 58, ILO (International Labour Office); Social Protection Department.
- Soto, M., V. Thakoor, and M. Petri (2015). Pension Reforms in Mauritius: Fair and Fast— Balancing Social Protection and Fiscal Sustainability. IMF Working Paper No. 15/126.
- Willmore, L. (2007). Universal Pensions for Developing Countries. World Development 35(1), 24–51.
- Wright, G., M. Noble, H. Barnes, D. McLennan, and M. Mpike (2016). SAMOD, a South African tax-benefit microsimulation model: Recent developments. Wider working paper 2016/115.