Does a mother's exposure to drought in utero increase the resistance of her offspring to in utero shocks?

Does a mother's exposure to drought in utero increase the resistance of her offspring to in utero shocks?

Yaya S. Jallow

University of Leicester

June 7, 2018

ション ふゆ く は く は く む く む く し く

Introduction

- In utero shocks not only affect child health, but also affect educational outcomes, wages and the likelihood of suffering from chronic illnesses later in life.
- A mother's exposure to a negative shock in utero can have adverse effects on her and her offspring.
- An increase in the occurrence of extreme weather events in the Sub Saharan Africa has led to an increase in a certain group; the double exposed.

Introduction

- In utero shocks not only affect child health, but also affect educational outcomes, wages and the likelihood of suffering from chronic illnesses later in life.
- A mother's exposure to a negative shock in utero can have adverse effects on her and her offspring.
- An increase in the occurrence of extreme weather events in the Sub Saharan Africa has led to an increase in a certain group; the double exposed.

The aim of this paper is to:

- Determine whether resistance to in utero shocks is passed from mother to child.
- Show that first and second generation models can be estimated in the same econometric model.

Does a mother's exposure to drought in utero increase the resistance of her offspring to in utero shocks?

Background on Shocks

Senegal is a country in West Africa, with a population of 15 million. Since 1980, the country has experienced 5 drought events, with 2 of these classed as major (1983/4 and 2011).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Background on Shocks

- Senegal is a country in West Africa, with a population of 15 million. Since 1980, the country has experienced 5 drought events, with 2 of these classed as major (1983/4 and 2011).
- The 1983/4 drought was the worst in the country's recorded history, with over 1.2 million affected and agricultural output only 30% of the previous year's. GDP and value added per agricultural worker were down by 5.3% and 24% respectively.
- The 2011 drought was less severe but affected an estimated 800,000 people. GDP growth was under 1%, due to diversification of the economy away from agriculture relative to 1983.

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

Identification and Data

- Two drought events (both random) 28 years apart were identified.
- Use pregnancy history to test for culling effect with a Heckman Two-Stage regression.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Identification and Data

- Two drought events (both random) 28 years apart were identified.
- Use pregnancy history to test for culling effect with a Heckman Two-Stage regression.
- The 2014 Continuous DHS for Senegal is used in the paper.
- The children (under 5s) in our sample are divided into 4 groups: control, immediate, intergenerational and double exposed.
- Mothers born between November 1983 and February 1985 are considered treated, whilst children born between November 2011 and February 2013 are considered. treated.
- A difference-in-difference model is estimated with controls for child, mother and village attributes included in model.

Identification and Data

- Two drought events (both random) 28 years apart were identified.
- Use pregnancy history to test for culling effect with a Heckman Two-Stage regression.
- The 2014 Continuous DHS for Senegal is used in the paper.
- The children (under 5s) in our sample are divided into 4 groups: control, immediate, intergenerational and double exposed.
- Mothers born between November 1983 and February 1985 are considered treated, whilst children born between November 2011 and February 2013 are considered. treated.
- A difference-in-difference model is estimated with controls for child, mother and village attributes included in model.

The main model, estimated using difference-in-difference:

$$y_{is} = \beta_0 + \delta_0 d_0 + \delta_1 d_1 + \delta_2 d_0 d_1 + C' \phi_c + X' \phi_x + V' \phi_v + u_i, \tag{1}$$

Results

Table:	Results	\mathbf{of}	DiD	Regression
--------	---------	---------------	----------------------	------------

Birth weight	Weight-for-Age	Weight-for-Height	Height-for-Age
-7.673	-0.307	-0.211	-0.363
[27.860]	$[0.052]^{***}$	$[0.049]^{***}$	$[0.058]^{***}$
-91.15	-0.215	-0.165	-0.19
[93.889]	[0.137]	[0.109]	[0.152]
144.174	0.347	0.271	0.217
[131.106]	[0.171]**	$[0.128]^{**}$	[0.207]
0.04	0.05	0.02	0.05
	[27.860] -91.15 [93.889] 144.174 [131.106] 0.04	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

 1 All 4 models were regressed using the survey's sample weights and standard errors were clustered at the clustevel.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Results

Table:	Results	of DiD	Regression
--------	---------	--------	------------

	Birth weight	Weight-for-Age	Weight-for-Height	Height-for-Age
Child Exposed	-7.673	-0.307	-0.211	-0.363
	[27.860]	[0.052]***	$[0.049]^{***}$	[0.058]***
Mother Exposed	-91.15	-0.215	-0.165	-0.19
	[93.889]	[0.137]	[0.109]	[0.152]
Both Exposed	144.174	0.347	0.271	0.217
-	[131.106]	[0.171]**	[0.128]**	[0.207]
R-Squared	0.04	0.05	0.02	0.05

 1 All 4 models were regressed using the survey's sample weights and standard errors were clustered at the clus level.

32

- Double exposed children have better weight-for-age and weight-for-height measures than child exposed and mother exposed children.
- The net effect for double exposed children is -0.175 (0.347-0.307-0.215) standard deviations versus -0.307 for child exposed and -0.215 for mother exposed.
- The resistance wipes out the negative effect of the mother exposed effect.

Results Cont'd

Birth weight	Weight-for-Age	Weight-for-Height	Height-for-Age
-25.242	-0.486	-0.225	-0.701
[38.204]	[0.052]***	[0.055]***	[0.055]***
-63.562	-0.301	-0.222	-0.306
[95.622]	[0.158]*	[0.121]*	$[0.161]^*$
121.905	0.418	0.335	0.419
[146.100]	[0.195]**	[0.135]**	$[0.224]^*$
0.03	0.04	0.01	0.07
1,870	4,865	4,844	4,849
	-25.242 [38.204] -63.562 [95.622] 121.905 [146.100] 0.03	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Table: Results of Fixed Effects at Settlement cluster Level

Results Cont'd

	Birth weight	Weight-for-Age	Weight-for-Height	Height-for-Age
Child Exposed	-25.242	-0.486	-0.225	-0.701
-	[38.204]	[0.052]***	[0.055]***	[0.055]***
Mother Exposed	-63.562	-0.301	-0.222	-0.306
	[95.622]	$[0.158]^*$	[0.121]*	$[0.161]^*$
Both Exposed	121.905	0.418	0.335	0.419
	[146.100]	[0.195]**	[0.135]**	$[0.224]^*$
R-Squared	0.03	0.04	0.01	0.07
Observations	1,870	4,865	4,844	4,849

Table: Results of Fixed Effects at Settlement cluster Level

- Results of the FE similar in signs to the DiD, with a Hausmann test showing the FE as the preferred model.
- In the end, both models give the same results, with the FE giving stronger effects.
- Height-for-age is now significant with regards to the mother and double exposed parameters. ▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

Other Results and Robustness Checks

Other Results

- Estimated Pooled OLS, with survey rounds as time periods.
- Include trimester of exposure for child to see whether there is a differential.

Robustness Checks

- Created synthetic shocks to serve as placebo tests. Both for pure controls only and for the whole sample of children.
- Use 1983 only as the drought gives the same (qualitative) results.
- Split sample by: Gender of children, Age group of children and Urban/Rural.

うして ふゆう ふほう ふほう ふしつ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Thank you