Introduction Measuring drought Predicted greenness Data Results Validation 0 000

Predicted Greenness: Refining the econometrics of global drought measurement

Peter Kielberg Fisker

Introduction	Measuring drought	Predicted greenness	Data	Results	Validation
0	000				

・ロト ・ 西 ト ・ ヨ ト ・ ヨ ・ うへぐ

Introduction	Measuring drought	Predicted greenness	Data	Results	Validation
0	000				

■ Identifies potential caveats of existing measures of agricultural drought used in the economics literature.

Introduction	Measuring drought	Predicted greenness	Data	Results	Validation
0	000				

- Identifies potential caveats of existing measures of agricultural drought used in the economics literature.
- Suggests an alternative: predicted greenness anomalies.

Introduction	Measuring drought	Predicted greenness	Data	Results	Validation
0	000				

- Identifies potential caveats of existing measures of agricultural drought used in the economics literature.
- Suggests an alternative: predicted greenness anomalies.
- Validates the relevance of the drought measure by:

Introduction	Measuring drought	Predicted greenness	Data	Results	Validation
0	000				

- Identifies potential caveats of existing measures of agricultural drought used in the economics literature.
- Suggests an alternative: predicted greenness anomalies.
- Validates the relevance of the drought measure by:
 Testing for weather station bias.

Introduction	Measuring drought	Predicted greenness	Data	Results	Validation
0	000				

- Identifies potential caveats of existing measures of agricultural drought used in the economics literature.
- Suggests an alternative: predicted greenness anomalies.
- Validates the relevance of the drought measure by:
 - **1** Testing for weather station bias.
 - **2** Identifying self-reported droughts.

Introduction	Measuring drought	Predicted greenness	Data	Results	Validation
0	000				

- Identifies potential caveats of existing measures of agricultural drought used in the economics literature.
- Suggests an alternative: predicted greenness anomalies.
- Validates the relevance of the drought measure by:
 - **1** Testing for weather station bias.
 - **2** Identifying self-reported droughts.
 - 3 Estimating the effect on economic activity.

Introduction •	Measuring drought 000	Predicted greenness	Data	Results	Validation
Motivation					

Motivation

・ロト ・ 西 ト ・ ヨ ト ・ ヨ ・ うへぐ

Introduction •	Measuring drought 000	Predicted greenness	Data	Results	Validation
Motivation					
Motivati	on				

 Measures of climate and weather have become widespread in economic research; both as independent variables and instrumental variables.

Introduction •	Measuring drought 000	Predicted greenness	Data	Results	Validation
Motivation					

Motivation

- Measures of climate and weather have become widespread in economic research; both as independent variables and instrumental variables.
- Drought is probably the most devastating type of natural hazard. Population growth and global warming might lead to more drought disasters in near future.

Introduction •	Measuring drought 000	Predicted greenness	Data	Results	Validation
Motivation					

Motivation

- Measures of climate and weather have become widespread in economic research; both as independent variables and instrumental variables.
- Drought is probably the most devastating type of natural hazard. Population growth and global warming might lead to more drought disasters in near future.
- In order to study the consequences of drought, it is important to minimize measurement error and potential endogeneity.

Introduction	Measuring drought	Predicted greenness	Data	Results	Validation
0	000				

Introduction	Measuring drought	Predicted greenness	Data	Results	Validation
0	000				

■ **Meteorological** drought: An extended period of time without rainfall.

Introduction	Measuring drought	Predicted greenness	Data	Results	Validation
0	000				

- **Meteorological** drought: An extended period of time without rainfall.
- **Hydrological** drought: Lack of surface water resulting from lack of rainfall.

Introduction	Measuring drought	Predicted greenness	Data	Results	Validation
0	000				

- **Meteorological** drought: An extended period of time without rainfall.
- **Hydrological** drought: Lack of surface water resulting from lack of rainfall.
- Agricultural drought: Links dryness with agricultural impacts. Takes into account precipitation shortages, differences between actual and potential evapotranspiration, soil water deficits, etc.

Measuring drought ●00 Predicted greenness

Data

Results

Validation

Global measures of agricultural drought

Peter Kielberg Fisker Predicted Greenness: ▲ロト ▲園ト ▲目ト ▲目ト 三目 - のへで

Global measures of agricultural drought

• Those that take into account factors that determine the growth of plants:

- Those that take into account factors that determine the growth of plants:
 - Often weather station based.

- Those that take into account factors that determine the growth of plants:
 - Often weather station based.
 - Palmer Drought Severity Index (PDSI), Standardized Precipitation Index (SPI), Standardized Precipitation-Evapotranspiration Index (SPEI)

- Those that take into account factors that determine the growth of plants:
 - Often weather station based.
 - Palmer Drought Severity Index (PDSI), Standardized Precipitation Index (SPI), Standardized Precipitation-Evapotranspiration Index (SPEI)
- Those based on direct observations of plant conditions:

- Those that take into account factors that determine the growth of plants:
 - Often weather station based.
 - Palmer Drought Severity Index (PDSI), Standardized Precipitation Index (SPI), Standardized Precipitation-Evapotranspiration Index (SPEI)
- Those based on direct observations of plant conditions:
 - \blacksquare Often satellite based.

Global measures of agricultural drought

- Those that take into account factors that determine the growth of plants:
 - Often weather station based.
 - Palmer Drought Severity Index (PDSI), Standardized Precipitation Index (SPI), Standardized Precipitation-Evapotranspiration Index (SPEI)
- Those based on direct observations of plant conditions:
 - Often satellite based.
 - Normalized Difference Vegetation Index (NDVI) anomalies.

Introduction Measuring drought Predicted greenness Data Results Validation 0 0€0

Shortcomings of weather station based drought measures

▲ロト ▲園ト ▲目ト ▲目ト 三目 - のへで

Shortcomings of weather station based drought measures

• Ground based drought measures only consider changes in rainfall and temperature. The color of the land is only observable from above.

Shortcomings of weather station based drought measures

- Ground based drought measures only consider changes in rainfall and temperature. The color of the land is only observable from above.
- There might be very far between weather stations.

Shortcomings of weather station based drought measures

- Ground based drought measures only consider changes in rainfall and temperature. The color of the land is only observable from above.
- There might be very far between weather stations.
- The distance to the nearest weather station is probably correlated with income levels and population density.

Shortcomings of observed greenness anomalies

Variation in greenness might be caused by other factors than the climatic:

Peter Kielberg Fisker Predicted Greenness: ・ロト ・ 西ト ・ ヨト ・ ヨー ・ つへぐ

Shortcomings of observed greenness anomalies

Variation in greenness might be caused by other factors than the climatic:

 \blacksquare Deforestation

◆ロト ◆昼 ト ◆臣 ト ◆臣 - のへで

Shortcomings of observed greenness anomalies

Variation in greenness might be caused by other factors than the climatic:

 \blacksquare Defore station

 \blacksquare Urban development

・ロト 《四 》 《三 》 《三 》 《日 》

Shortcomings of observed greenness anomalies

Variation in greenness might be caused by other factors than the climatic:

 \blacksquare Deforestation

- \blacksquare Urban development
- Changes in cultivation and irrigation patterns.

Measuring drought 000

Predicted greenness

Data

Results

Validation

Solution: Predicted greenness anomalies

Peter Kielberg Fisker Predicted Greenness: Introduction Measuring drought 0 000 Predicted greenness

Data

Results

Validation

Solution: Predicted greenness anomalies

 By the use of satellite data, we are able to observe globally - both the outcome of drought and the determinants of drought. Introduction Measuring drought Pre

Predicted greenness

Data

Results Val

Validation

Solution: Predicted greenness anomalies

- By the use of satellite data, we are able to observe globally - both the outcome of drought and the determinants of drought.
- This allows for the estimation of predicted greenness anomalies where anomalies in rainfall and temperatures (with up to 6 lags) are used to predict greenness anomalies.

Introduction Measuring drought Pre 0 000

Predicted greenness

Data

Results Va

Validation

Solution: Predicted greenness anomalies

- By the use of satellite data, we are able to observe globally - both the outcome of drought and the determinants of drought.
- This allows for the estimation of predicted greenness anomalies where anomalies in rainfall and temperatures (with up to 6 lags) are used to predict greenness anomalies.
- The result is an agricultural drought index that takes into account both input variables and observed greenness anomalies while filtering out all anthropogenic causes of changes in greenness.

Introduction	Measuring drought	Predicted greenness	Data	Results	Validation
0	000				

Data: Rainfall

Measuring drought 000

Predicted greenness

Data

Results V

Validation

Data: Daytime temperatures

・ロト (雪) (手) (目) ヨークへの

Measuring drought 000

Predicted greenness

Data

Results

Validation

Data: Temperatures at night

Peter Kielberg Fisker Predicted Greenness:

Intro	duction
0	

Predicted greenness

Data

Results

Validation

500

Data: NDVI

《 ㅁ 》 《 🗗 》 《 토 》 《 토

Measuring drought 000

Predicted greenness

Data

Results

Validation

How is the data combined?

▲ロト ▲園ト ▲目ト ▲目・ ● ● ●

Introduction	Measuring drought	Predicted greenness	Data	Results	Validation
0	000				

How is the data combined?

1: OLS: $N\ddot{D}VI_{itm,OLS} = \gamma_0 + \sum_{n=0}^{6} \left(\gamma_{1n} \ddot{P}_{it,m-n} + \gamma_{2n} \ddot{T}_{hit,m-n} \right) + \delta_t + \epsilon_{itm}$ (3)

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Introduction	Measuring drought	Predicted greenness	Data	Results	Validation
0	000				

How is the data combined?

1: OLS:

$$N\ddot{D}VI_{itm,OLS} = \gamma_0 + \sum_{n=0}^{6} \left(\gamma_{1n} \ddot{P}_{it,m-n} + \gamma_{2n} \ddot{T}_{hit,m-n} \right) + \delta_t + \epsilon_{itm}$$
(3)

2: OLS with climate zone interaction:

$$N\ddot{D}VI_{itm,i} = \gamma_0 + \sum_{n=0}^{6} \left(\gamma_{1n} \ddot{P}_{it,m-n} + \gamma_{2n} \ddot{T}_{hit,m-n} + \gamma_{3n} \ddot{P}_{it,m-n} * C_i \right)$$
$$+ \gamma_{4n} \ddot{T}_{hit,m-n} * C_i + \delta_t + \epsilon_{itm}$$
(4)

▲ロト ▲母ト ▲ミト ▲ミト 三回 - のへで

Introduction	Measuring drought	Predicted greenness	Data	Results	Validation
0	000				

How is the data combined?

1: OLS:

$$N\ddot{D}VI_{itm,OLS} = \gamma_0 + \sum_{n=0}^{6} \left(\gamma_{1n} \ddot{P}_{it,m-n} + \gamma_{2n} \ddot{T}_{hit,m-n} \right) + \delta_t + \epsilon_{itm}$$
(3)

2: OLS with climate zone interaction:

$$N\ddot{D}VI_{itm,i} = \gamma_0 + \sum_{n=0}^{6} \left(\gamma_{1n}\ddot{P}_{it,m-n} + \gamma_{2n}\ddot{T}_{hit,m-n} + \gamma_{3n}\ddot{P}_{it,m-n} * C_i \right)$$
$$+ \gamma_{4n}\ddot{T}_{hit,m-n} * C_i + \delta_t + \epsilon_{itm}$$
(4)

3: Random forest

▲ロト ▲母ト ▲ミト ▲ミト 三回 - のへで

Introduction Measuring drought Predicted greenness Data **Results** Validation 0 000

Predicted greenness anomalies - Ordinary Least Squares

<ロト < 部 > < 注 > < 注 > こ の < で</p>

Measuring drought 000

Predicted greenness

Data

Results

Validation

Predicted greenness anomalies in 2010 - Ordinary Least Squares

◆ロ > ◆母 > ◆臣 > ◆臣 > ○臣 - のへで

Introduction Measuring drought Predicted greenness Data **Results** Validation 0 000

Predicted greenness anomalies - OLS with climate zones

nac

Measuring drought 000 Predicted greenness

Data

Results

Validation

Predicted greenness anomalies in 2010 - OLS with climate zones

◆ロ > ◆母 > ◆臣 > ◆臣 > ○臣 - のへで

Introduction Measuring drought Predicted greenness Data **Results** 0 000

Predicted greenness anomalies - Random Forest

Peter Kielberg Fisker Predicted Greenness: Validation

Measuring drought 000

Predicted greenness

Data

Predicted greenness anomalies in 2010 - Random Forest

▲ロト ▲母 ト ▲目 ト ▲目 ト ▲日 ト ④ ヘ ()

Measuring drought 000

Predicted greenness

Data

Results

Validation

6-month SPEI in 2010

<ロト < 部 > < 注 > < 注 > こ の < @</p>

Evaluating predicted greenness anomalies

Are predicted greenness anomalies better than existing drought measures?

・ロト ・母 ト ・ ヨ ・ うへで

Evaluating predicted greenness anomalies

Are predicted greenness anomalies better than existing drought measures?

 \blacksquare Testing for weather station bias

Evaluating predicted greenness anomalies

Are predicted greenness anomalies better than existing drought measures?

- \blacksquare Testing for weather station bias
- Identifying self-reported droughts

Evaluating predicted greenness anomalies

Are predicted greenness anomalies better than existing drought measures?

- \blacksquare Testing for weather station bias
- Identifying self-reported droughts
- \blacksquare Assessing the effect on economic activity

Introduction	Measuring drought	Predicted greenness	Data	Results	Validation
0	000				

Distance to weather stations

Intro	duction	
0		

Weather station bias

	(1)	(2)	(3)	(4)
~				
$NDV\ddot{I} - ols_{itm}$	0.414^{***}			
	(0.000)			
$NDVI - ols, c_{itm}$		0.298***		
,		(0.000)		
NDVI - BF		· · ·	0.274***	
itiziti itm			(0.000)	
NÖVI			(0.000)	0 196***
11271				(0.000)
	0.000***			(0.000)
Dist * NDVI - olsitm	-0.069***			
<u></u>	(0.000)			
$Dist * NDVI - ols, c_{itm}$		-0.010***		
~		(0.000)		
$Dist * NDV\ddot{I} - RF_{itm}$			-0.005***	
			(0.000)	
$Dist * N\ddot{D}VI$				-0.010***
				(0.000)
Observations	19,846,352	19,844,720	$17,\!102,\!495$	21,287,733
R-squared	0.117	0.085	0.072	0.026

 $\overline{\mathbf{S}}$ Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. All drought indices are standardized to mean 0 and s.d. 1. Distance is measured in 400 kms = 100 kms $\exists \rightarrow$ nac ъ

Measuring drought 000

Predicted greenness

Data

Results

Validation

Identifying self-reported droughts

▲ロト ▲母 ▶ ▲臣 ▶ ▲臣 ▶ □ 臣 ● ���

Identifying self-reported droughts

Table 5: Correlation between drought indices and self-reported droughts

	Drought	$SPEI_{06}$	\widehat{NDVI}_{OLS}	$\widehat{NDVI}_{OLS,c}$	\widehat{NDVI}_{RF}
SPEI 06	-0.017	1			
\widehat{NDVI}_{OLS}	-0.024	0.359	1		
$\widehat{NDVI}_{OLS,c}$	-0.031	0.307	0.775	1	
\widehat{NDVI}_{RF}	-0.030	0.294	0.638	0.785	1
NÖVI	-0.021	0.193	0.434	0.564	0.713

All drought indices are standardized to mean 0 and s.d. 1. For this analysis, the pixel-level data has been collapsed to second-level administrative units resulting in 3.3m observations (distrivt-months). In order to give larger weight to larger land areas, the correlation coefficients are weighted by the size of each unit.

Measuring drought 000

Predicted greenness

Data

Results

Validation

Effect on economic activity

▲ロト ▲園ト ▲目ト ▲目・ ● ● ●

Introduction	Measuring drought	Predicted greenness	Data	Results	Validation
0	000				

Effect on economic activity

■ The causal effect of drought on economic activity is typically studied at the macro level or the household level. This is an attempt to estimate the effect at the pixel level.

Introduction	Measuring drought	Predicted greenness	Data	Results	Validation
0	000				

Effect on economic activity

- The causal effect of drought on economic activity is typically studied at the macro level or the household level. This is an attempt to estimate the effect at the pixel level.
- As a valid and reliable proxy for economic activity, I use year-on-year changes in lights at night.

Effect on economic activity

- The causal effect of drought on economic activity is typically studied at the macro level or the household level. This is an attempt to estimate the effect at the pixel level.
- As a valid and reliable proxy for economic activity, I use year-on-year changes in lights at night.
- Predicted greenness anomalies are aggregated to yearly averages and subsequently used to explain changes in artificial lights at night.

Measuring drought 000

Predicted greenness

Data

Results Validation

Effect on economic activity

▲ロト ▲母 ト ▲ 田 ト ▲ 田 ト ● ● ● ● ●

Measuring drought Predicted greenness

Data

Results Validation

Effect on economic activity

	(1)	(2)	(3)	(4)	(5)	(6)
NÖVI	0.39***	-0.07***	-0.07***			
	(0.02)	(0.02)	(0.02)			
$W * \widehat{NDVI}$		0.79***	0.81***			
		(0.05)	(0.05)			
$SPEI_{06}$				0.07***	-0.06**	-0.08**
				(0.01)	(0.03)	(0.03)
$W * SPEI_{06}$					0.17^{***}	0.23^{***}
					(0.03)	(0.04)
Country dummies	No	No	Yes	No	No	Yes
Observations	1.83m	1.83m	1.83m	1.65m	1.65m	1.65m
R-squared	0.002	0.004	0.006	0.000	0.000	0.002
Dependent variable	e: year-on-	year chang	es in lumin	osity as m	easured by	the share

Table 6: Changes in luminosity and predicted greenness

of pixels lit within each unit of observation (in percent). Standard errors clustered at second sub-national level administrative units in parentheses.

Introduction	Measuring drought	Predicted greenness	Data	Results	Validation
0	000				

・ロト ・ 西 ト ・ ヨ ト ・ ヨ ・ うへぐ

Introduction	Measuring drought	Predicted greenness	Data	Results	Validation
0	000				

• Potential caveats of existing drought measures have been highlighted.

Introduction	Measuring drought	Predicted greenness	Data	Results	Validation
0	000				

- Potential caveats of existing drought measures have been highlighted.
- An alternative predicted greenness anomalies has been introduced, which is unaffected by the distance to nearest weather station.

Introduction	Measuring drought	Predicted greenness	Data	Results	Validation
0	000				

- Potential caveats of existing drought measures have been highlighted.
- An alternative predicted greenness anomalies has been introduced, which is unaffected by the distance to nearest weather station.
- Predicted greenness anomalies seem to outperform other global drought measures in predicting self-reported droughts as well as economic activity at the pixel level.