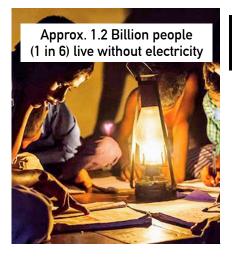


The Adverse Effects of Electrification: Evidence from India

Fenella Carpena Oslo Business School

Nordic Conference on Development Economics June 11, 2018


▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Empirical Method

Empirical Results

Theoretical Framework

Motivation

Electrification programs have attracted policy support and billions of dollars

(日)、(四)、(E)、(E)、(E)

Existing Evidence on the Effects of Electrification

Positive Effects

- Increased female employment (e.g., Dinkelman, AER 2011)
- Reduced poverty rates (e.g., Lipscomb et al., AEJ:A 2013)
- Improved health (e.g., Barron and Torero, JEEM 2017)

Negative Effects

Relatively unexplored

This paper

- Rural India
- Electrification increases price of alternative lighting fuel
- Negatively impacts those who do not adopt electricity

This paper: Electrification adversely affects non-adopters

Descriptives: Lighting is one of the main uses of electricity

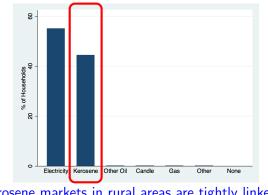
- Electrification impacts the market for alternative lighting
- Main alternative: kerosene (paraffin)
- Empirics: Diff-in-diff using India's National Rural Electrification Program
 - *Main result:* electricity entry \rightarrow kerosene prices 5-10% \uparrow
 - Higher kerosene prices hurts electricity non-adopters
 - Non-adopters also the poorest HHs
- **Theory:** Construct a model extending Salop (1979)
 - Potential mechanism for price increase: \downarrow market size
 - Kerosene retailers incur fixed costs
 - In equilibrium, price = average cost
 - Electrification causes the pool of kerosene buyers to shrink

Research

- Development Economics: Fills a knowledge gap on the impact of electrification on markets
- IO: Contributes to small but growing literature on the price-increasing effects of competition (e.g., Stiglitz, 1987; Schulz and Stahl, 1996)

Policy

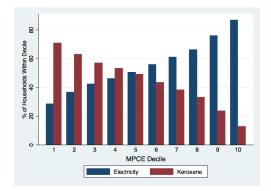
- Speaks to ongoing debate in many countries on removing kerosene subsidies
- Relates to a bigger theme on the potential negative consequences of the introduction of new technologies


Motivating Facts

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 Next to electricity, kerosene is the second most common energy source for lighting among rural households.

Figure: Main Lighting Energy Sources of Rural Households



 \rightarrow Kerosene markets in rural areas are tightly linked with power sector reforms.

2 Kerosene use is more prevalent among the poor.

Figure: Kerosene/Electricity use by expenditure deciles

 \rightarrow The poor are more vulnerable to kerosene price increases.

Empirical Context

India's National Rural Electrification Program

- Rajiv Gandhi Grameen Vidyutikaran Yojana (RGGVY) or the Prime Minister's Rural Electrification Scheme ("the program")
- Nation-wide program **launched in 2005**, implemented during 10th (2002-2007) and 11th (2007-2012) Five-Year Plans
- Electrification projects were executed at the **district-level**, two main components:
 - Electricity distribution infrastructure: substation in each subdistrict; install distribution transformers in each village
 - Free household connections: provided to Below Poverty Line (BPL) HHs; above poverty line are required to pay connection fee (about Rs. 3000)

• Implementation/Treatment Date in this paper: when project funds are first disbursed to the district.

Data

Main Outcome of Interest: Kerosene Prices

National Sample Survey (NSS) Consumer Expenditure

- Socio-economic survey, all of India (except inaccessible areas)
- Annual data from 2001-2007, 2009, 2010
- HH-level consumption of kerosene (past 30 days) \rightarrow unit value (total expenditure \div qty consumed)
- Proxy for price: median unit value, by district-year
- Q Rural Price Collection Data
 - Actual prices (micro-data for CPI)
 - Covers 603 markets in 26 states, but only 1/2 of all districts

• Market-level, monthly data from 2001-2011

Empirical Method

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Differences-in-Differences: 3 District-level Regressions

O Discrete Treatment Variable

$$y_{dt} = \beta RGGVY_{dt} + \gamma_d + \lambda_t + \delta \mathbf{X}_{d2001}t + \epsilon_{dt}$$

- *RGGVY_{dt}*: dummy turning on when the program is implemented in district *d* at time *t*
- District fixed effects: γ_d ; Time fixed effects: λ_t
- X_{d2001}t: vector of 2001 baseline district characteristics interacted with time trend
- 2 Continuous Treatment Variable

$$y_{dt} = \beta Connections_{dt} + \gamma_d + \lambda_t + \delta \mathbf{X}_{d2001} t + \epsilon_{dt}$$

• Connections_{dt}: 0 in pre-program years; then, BPL HH connections as a proportion of total HHs in Census 2001

Differences-in-Differences: 3 District-level Regressions

Sevent Study

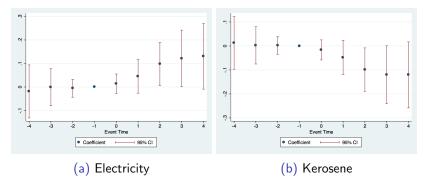
$$y_{dt} = \sum_{k=-4}^{5} \beta_k D_{dt}^k + \gamma_d + \lambda_t + \delta \mathbf{X}_{d2001} t + \epsilon_{dt}$$

- D^k_{dt}: dummy variable indicating in district d at time t, RGGVY was implemented k periods ago
- First lead D_{dt}^{-1} is excluded, so β 's estimated relative to year before implementation
- Direct test of identifying assumption of diff-in-diff
- Shows dynamic effects of RGGVY over time

Empirical Results

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 Table: Dependent Variable: Proportion of HHs in the District using


 Electricity or Kerosene as Main Source of Lighting

	Electricity		Kerosene	
	(1)	(2)	(3)	(4)
RGGVY Dummy	0.012*		-0.014**	
	(0.007)		(0.007)	
RGGVY BPL Connections		0.137***		-0.153***
		(0.029)		(0.029)
District FEs	Yes	Yes	Yes	Yes
NSS Round FEs	Yes	Yes	Yes	Yes
2001 District Vars $ imes$ Linear Time	Yes	Yes	Yes	Yes
Adj. R-squared	0.828	0.829	0.831	0.832
Ν	5399	5399	5399	5399

Year prior to government's launch of RGGVY: Ave. proportion of rural HHs using electricity as main source of lighting: 0.62; kerosene: 0.44. Median treatment intensity: 14% BPL Coverage

-< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Figure: Event Study on Electricity and Kerosene Use

Regression sample restricted to districts treated during the 10th Plan to achieve a balanced panel of districts before/after RGGVY implementation. Coefficient at event time t = -1 is zero by construction (omitted category in the regression).

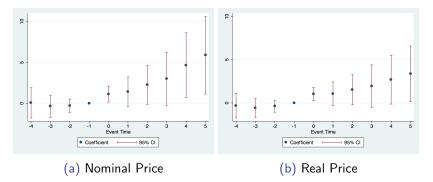

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへ⊙

Table: Dependent Variable: Kerosene Prices (Rupees, unit values)

	Nominal Kerosene Price		Real Kerosene Price	
	(1)	(2)	(3)	(4)
RGGVY Dummy	0.809***		0.436**	
	(0.272)		(0.207)	
RGGVY BPL Connections		2.358*		1.282*
		(1.258)		(0.711)
District FEs	Yes	Yes	Yes	Yes
NSS Round FEs	Yes	Yes	Yes	Yes
2001 District Vars \times Linear Time	Yes	Yes	Yes	Yes
Adj. R-squared	0.672	0.671	0.491	0.491
Ν	5122	5122	5122	5122

Dependent variable is the median unit value of kerosene from the NSS, for each district-year. Pre-program kerosene prices: Rs. 15 (nominal), Rs. 13.7 (real). Median treatment intensity: 14% BPL Coverage

Figure: Event Study on Kerosene Prices, Rupees (unit values)

Regression sample restricted to districts treated during the 10th Plan to achieve a balanced panel of districts before/after RGGVY implementation. Coefficient at event time t = -1 is zero by construction (omitted category in the regression).

(日)、

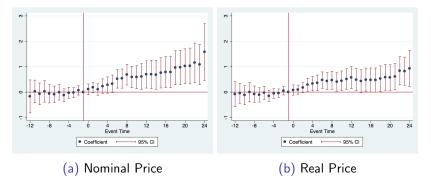

э

Table: Dependent Variable: Kerosene Prices (Rupees, CPI micro-data)

	Nominal Kerosene Price		Real Kerosene Price	
	(1)	(2)	(3)	(4)
RGGVY Dummy	1.295***		0.919***	
	(0.363)		(0.336)	
RGGVY BPL Connections		4.962***		1.802**
		(1.664)		(0.872)
Market FEs	Yes	Yes	Yes	Yes
Month FEs	Yes	Yes	Yes	Yes
2001 District Vars $ imes$ Linear Time	Yes	Yes	Yes	Yes
Adj. R-squared	0.834	0.835	0.799	0.798
N	27361	27361	27361	27361

Dependent variable is kerosene price from the CPI micro-data, at the market-month level. Average pre-program kerosene price: Rs. 15 (nominal), Rs. 14.5 (real). Median treatment intensity: 14% BPL Coverage

Figure: Event Study on Kerosene Prices, Rupees (CPI micro-data)

Regression sample restricted to a balanced panel of districts before/after RGGVY implementation. Coefficient at event time t = -1 is zero by construction (omitted category in the regression).

(日)、

ъ

Robustness Checks

Placebo Tests

- Urban areas (not covered by the program) electricity/kerosene use, kerosene prices
- Rural price of rice
- Rural price of subsidized kerosene
- Functional Form
 - Log kerosene prices
- Control Variables
 - No controls
 - Alternative: quartiles of baseline chars. interacted w/ time

Why do kerosene prices increase?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Why do kerosene prices increase?

- Electricity and kerosene are close substitutes.
- Standard supply/demand framework would predict prices fall.
- To better understand how electrification would affect kerosene prices, I adapt the Salop (1979) circular model.
 - Monopolistically competitive model, used in retail settings

- Captures spatial differentiation across kerosene retailers
- Basic intuition:
 - Kerosene sellers have fixed costs
 - In equilibrium, price equals average cost
 - When market size falls, prices may increase

- Rural electrification is increasingly being used as a policy tool for boosting development
- But their negative consequences are unclear
- Studying India's national rural electrification program, I show that electricity provision leads to higher kerosene prices
- These higher prices negatively impact the welfare of poor households, who continue to rely on kerosene
- Higher kerosene prices can be explained by a model where
 ↓ market size ⇒ ↑ average costs and thereby prices.

Thank you!

(ロ)、