Cast into Castes?

Targeting Persistent Caste-based Inequalities with Affirmative Action

Arpita Bhattacharjee

Leeds University Business School

June 12, 2018

Introduction

Evaluating Affirmative Action

- Many countries around the world working to ameliorate historical discrimination and marginalization
- Affirmative Action changes opportunity set available to disadvantaged groups.
- Affirmative Action in Higher Education preferential admission to one student implies exclusion of another.
- ▶ There is a trade-off to implementing policies of positive discrimination

Introduction •00

Anticipatory Responses can lead to Spillovers

- Quota in Higher Education increases students' perceived ability to get into college – behavioral response along two margins of educational attainment
 - direct effect more students enroll in college
 - spillover effect students who plan to go to college in the future stay in school longer
- Recent extension of affirmative action in higher education to Other Backward Classes (OBC) presents an opportunity to examine impacts along these two margins.

Introduction 000

Snapshot of Results

- ► Using Difference-in-Difference DID Graph for College DID Graph for High school
 - Differential increase in college enrollment rate for OBC by 5.3 percentage points as compared to Scheduled Castes.
 - Differential increase of 4.3 percentage points in high-school completion rate for OBC as compared to the Scheduled Castes.
- Using IV strategy
 - ▶ 10 percentage points increase in college enrolment rate increases school enrolment rates by 6 to 9 percentage points.

Mixed Bag of Evidence

- Improves enrollment/attendance in college and school, especially in higher quality schools
 - ▶ India: Bagde et al. (2016), Frisancho and Krishna (2016), Deshpande and Ramachandran (2015), Bertrand et al. (2010), Weisskopf (2004)
 - US: Epple et al. (2008), Arcidiacono (2005), Long (2004), Hinrichs (2012), Howell (2010), Domina (2007).
- Mismatch hypothesis:
 - Find Evidence: Bertrand et al. (2010), Frisancho and Krishna (2016), Arcidiacono et al. (2011)
 - No Evidence: Bagde et al. (2016), Fischer and Massey (2007), and Rothstein and Yoon (2008)

- ▶ I identify and estimate an effect of Affirmative Action on educational outcomes for the targeted group.
- Pan-India analysis using four rounds of nationally representative household survey – NSS Employment-Unemployment Surveys.
- Focus on possible spillovers to earlier schooling outcomes
- Adds along one margin to the political economy discussion on trade-offs inherent in affirmative action.
- Such policies change the opportunities available to underprivileged groups
 - this paper provides evidence that on an average, students from these targeted groups are able to utilize these opportunities.

Caste Hierarchy and Affirmative Action

Background

 Scheduled Castes (SC), Scheduled Tribes (ST), Other Backward Classes (OBC), and Others (General).

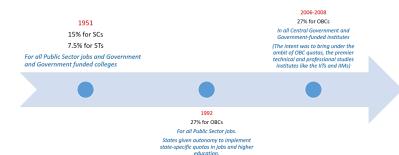


Figure 1: Time-line of Affirmative Action

- ▶ 2006 Central Government announced 27 percent quota for OBC in all Central Government colleges.
- ▶ April 2008 Supreme Court upheld the 27 percent OBC quota.

I use this exogenous shock in access to higher education in premier institutes to flesh out the impact increased access to college can have on school enrolments

- especially at the secondary and higher secondary levels.

Empirical Strategy I: Difference-in-Difference

Policy change was affected only for OBC – compare the outcomes before and after for OBC with two potential comparison groups, Scheduled Castes (SC) and/or Other (upper) Castes

$$Y_{it} = \beta_1 post_{it} + \beta_2 OBC_{it} + \beta_3 post_{it} OBC_{it} + \beta_4 X_{it} + \lambda_s + \mu_{it}$$

- Y whether enrolled in college/completed high school
- X education of household head, log of monthly per capita expenditure, urban, female
- $\triangleright \lambda_s$ State fixed effects

Empirical Strategy II: Instrumental Variable

First stage:

$$CollegeEnrollment_{cst} = \gamma_1 post_t + \gamma_2 OBC_{ct} + \gamma_3 post_t OBC_{ct} + \gamma_4 X_{cst} + \eta_{cst}$$

Second Stage:

$$SchoolEnroll_{icst} = \beta_1 College \widehat{Enroll}_{ment_{cst}} + \beta_2 X_{icst} + \mu_{it}$$

- ▶ 'CollegeEnrollment' mean college enrollment rate in a social group-state-year cell.
- 'SchoolEnroll' whether individual enrolled in school

- ► Might be picking effect of social change society changing in a way more favorable towards OBC group. Want to distinguish between that gradual social change and the effect of the policy. SES
- Ashenfelter Dip: do institutions strategically lower offers of admission to covered students in the period between announcement and implementation? Public Colleges have limited scope of that. But individuals can delay going to college, wait till the policy comes around. Do not see evidence

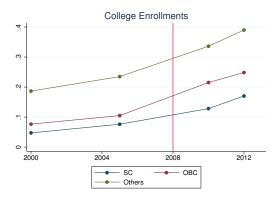


Figure 2: College Enrolment Rates: Before and After Policy

College Enrolment

SC	SC and Others
0.053***	0.022*
(0.009)	(0.012)
0.023	0.060*
(0.020)	(0.030)
-0.006	-0.027***
(0.004)	(0.005)
80,057	120,919
0.264	0.325
Yes	Yes
Yes	Yes
0.105	0.105
	0.053*** (0.009) 0.023 (0.020) -0.006 (0.004) 80,057 0.264 Yes Yes

Sample restricted to Hindu HHs and ages 17-21 SE clustered at State level

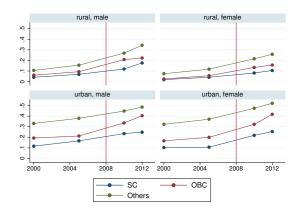


Figure 3: College Enrollment by place of residence and sex

postxOBC 0.016 0.008 0.055*** 0.049*** (0.023) (0.013) (0.016) (0.017) post 0.089** 0.067*** 0.035 0.025 (0.035) (0.018) (0.035) (0.033) OBC -0.015 -0.016*** -0.050*** -0.054*** (0.009) (0.005) (0.010) (0.019) Observations 38,254 35,086 25,835 21,744 R-squared 0.229 0.184 0.455 0.451 State FE Yes Yes Yes Yes	VARIABLES	Rural Male	Rural Female	Urban Male	Urban Female
(0.023) (0.013) (0.016) (0.017) post 0.089** 0.067*** 0.035 0.025 (0.035) (0.018) (0.035) (0.033) OBC -0.015 -0.016*** -0.050*** -0.054*** (0.009) (0.005) (0.010) (0.019) Observations 38,254 35,086 25,835 21,744 R-squared 0.229 0.184 0.455 0.451					
post 0.089** 0.067*** 0.035 0.025 (0.035) (0.018) (0.035) (0.033) OBC -0.015 -0.016*** -0.050*** -0.054*** (0.009) (0.005) (0.010) (0.019) Observations 38,254 35,086 25,835 21,744 R-squared 0.229 0.184 0.455 0.451	postxOBC	0.016	0.008	0.055***	0.049***
OBC (0.035) (0.018) (0.035) (0.033) -0.015 -0.016*** -0.050*** -0.054*** (0.009) (0.005) (0.010) (0.019) Observations 38,254 35,086 25,835 21,744 R-squared 0.229 0.184 0.455 0.451		(0.023)	(0.013)	(0.016)	(0.017)
OBC	post	0.089**	0.067***	0.035	0.025
(0.009) (0.005) (0.010) (0.019) Observations R-squared 38,254 35,086 25,835 21,744 0.455 0.451 21,744 0.455 0.451		(0.035)	(0.018)	(0.035)	(0.033)
Observations 38,254 35,086 25,835 21,744 R-squared 0.229 0.184 0.455 0.451	OBC	-0.015	-0.016***	-0.050***	-0.054***
R-squared 0.229 0.184 0.455 0.451		(0.009)	(0.005)	(0.010)	(0.019)
	Observations	38,254	35,086	25,835	21,744
State FE Yes Yes Yes Yes	R-squared	0.229	0.184	0.455	0.451
	State FE	Yes	Yes	Yes	Yes
Age dummies Yes Yes Yes Yes	Age dummies	Yes	Yes	Yes	Yes
Mean 0.0938 0.0557 0.213 0.200	Mean	0.0938	0.0557	0.213	0.200

*** p<0.01, ** p<0.05, * p<0.1

Sample restricted to Hindu HHs and ages 17-21 SE clustered at State level; SC and Others used as Control

High-School Completion

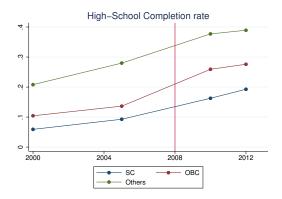


Figure 4: High-School Completion: Before and After Policy

High-School Completion

VARIABLES	SC	SC and Others
postxOBC	0.043***	0.027
	(0.013)	(0.016)
post	0.050**	0.082***
	(0.020)	(0.028)
OBC	0.011**	-0.024***
	(0.005)	(0.007)
Observations	47,968	72,387
R-squared	0.286	0.340
State FE	Yes	Yes
Age dummies	Yes	Yes
Mean	0.136	0.136

p<0.01, ** p<0.05, * p<0.1

Sample restricted to Hindu HHs and ages 17-19 SE clustered at State level

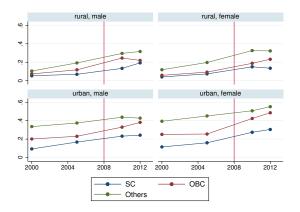


Figure 5: High-School Completion by place of residence and sex

VARIABLES	Rural Male	Rural Female	Urban Male	Urban Female
postxOBC	0.012	0.010	0.063***	0.071***
	(0.028)	(0.020)	(0.015)	(0.023)
post	0.108***	0.098***	0.038	0.041
	(0.030)	(0.024)	(0.030)	(0.035)
OBC	-0.006	-0.024***	-0.041***	-0.053**
	(0.008)	(0.006)	(0.011)	(0.021)
Observations	23,782	20,224	15,691	12,690
R-squared	0.236	0.237	0.444	0.517
State FE	Yes	Yes	Yes	Yes
Age dummies	Yes	Yes	Yes	Yes
Mean	0.117	0.0926	0.230	0.255
	*** -/	0.01 ** -0.05	* -0.1	

*** p<0.01, ** p<0.05, * p<0.1

Sample restricted to Hindu HHs and 17-19 years SE clustered at State level; SC and Others used as Control

IV (2SLS) Estimates

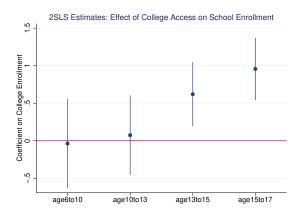


Figure 6: Impact of College Access on School Enrolment - 2SLS Estimates

IV (2SLS) Estimates

VARIABLES	Age 15-17	Age 13-15	Age 10-13	Age 6-10
college_access	0.957***	0.620***	0.075	-0.037
college_access	(0.211)	(0.221)	(0.260)	(0.297)
urban	-0.126***	-0.106***	-0.036	-0.020
	(0.029)	(0.032)	(0.037)	(0.044)
female	-0.082***	-0.085***	-0.081***	-0.063***
	(0.019)	(0.017)	(0.018)	(0.019)
hhedu	0.028***	0.022***	0.015***	0.014***
	(0.002)	(0.002)	(0.003)	(0.003)
logmpce	0.104***	0.100***	0.096***	0.089***
	(800.0)	(800.0)	(0.014)	(0.014)
Observations	75 020	70 466	110 770	120 440
	75,838	79,466	112,779	138,448
State FE	Yes	Yes	Yes	Yes
Age dummies	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes
F-test IV	13.49	17.09	15.27	16.90
	*** p<0.01	, ** p<0.05,	* p<0.1	

Sample includes SC, OBC, Others; SE clustered at State

To Summarize

- College Enrollment increased for OBC
- High School completion rates increased for OBC
- ► Heterogeneous effects
- ▶ IV estimates show that increased access to college improves school enrollments - significantly for older age-groups closer to higher education

Back

VARIABLES	before 2005	after 2010	Ages 25-30
postxOBC	0.001	0.011	-0.001
	(0.006)	(0.014)	(0.002)
post	0.012	-0.004	-0.004
	(0.009)	(0.013)	(0.003)
OBC	-0.026***	-0.017	-0.004***
	(0.004)	(0.010)	(0.001)
hhedu	0.018***	0.025***	0.002***
	(0.001)	(0.002)	(0.000)
urban	0.070***	0.045***	0.007***
	(0.012)	(0.012)	(0.002)
female	-0.036***	-0.058***	-0.012***
	(0.006)	(0.009)	(0.001)
logmpce	0.053*	0.087**	0.011***
	(0.028)	(0.034)	(0.003)
Observations	93,720	68.411	136,710
R-squared	0.249	0.384	0.038
Mean	0.0647	0.198	0.0125

Robust SE in parentheses; SE clustered at state-year Sample restricted to individuals aged 17 to 22 years SC and Others used as Control

Robustness Checks: High-School Completion

VARIABLES	before 2005	after 2010	Ages 25-30
postxOBC	-0.009	0.017	-0.009
	(0.009)	(0.020)	(0.006)
post	0.028**	-0.014	-0.002
	(0.011)	(0.013)	(0.010)
OBC	-0.023***	-0.022	-0.010***
	(0.005)	(0.018)	(0.004)
hhedu	0.021***	0.025***	0.019***
	(0.001)	(0.002)	(0.001)
urban	0.070***	0.034***	0.024***
	(0.011)	(0.013)	(0.007)
female	-0.002	0.006	-0.061***
	(0.009)	(0.010)	(0.005)
logmpce	0.043	0.058**	0.034***
	(0.029)	(0.028)	(0.011)
	, ,	. ,	. ,
Observations	44,557	32,957	132,812
R-squared	0.263	0.396	0.193
Mean	0.0903	0.243	0.0650

Robust SE in parentheses; SE clustered at state-year Sample restricted to individuals aged 17 to 19 years SC and Others used as Control

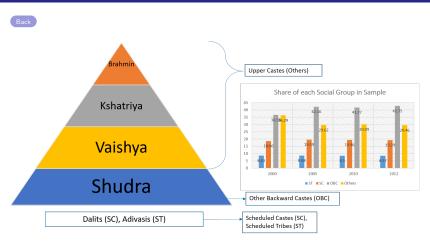


Figure 7: Caste Hierarchy

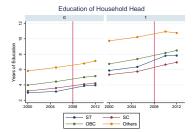
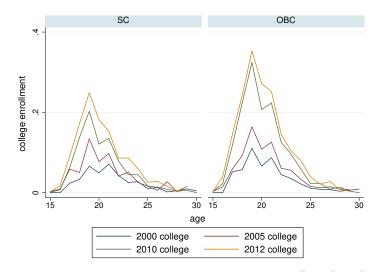



Figure 8: Caste Hierarchy

