17th Nordic Conference on Development Economics Aalto university, Helsinki, 11-12 June 2018

The impact of foreign aid on access to water and sanitation: a demand perspective

Javier Abellán¹ José Antonio Alonso^{1,2,3}

¹ Complutense University of Madrid ² University of Oxford ³ United Nations Committee for Development Policy

1. Introduction

- In 1990, 24 % of world population did not have access to safe water and 46 % did not have access to sanitation.
- The Millenium Declaration (2000) set the target of halving the proportion of world population without access to water and sanitation by 2015.
- The target for water (12 %) has been met (9 %). The target for sanitation (23 %) has not been met (32 %).
- There are large **differences** among world **regions** and between **urban** and **rural** areas.

1. Introduction

- Now, the sixth sustainable development goal (2015) is to ensure "water and sanitation for all" by 2030.
- Achieving this goal helps to achieve other important goals: promoting **good health** (3), equal opportunities for **women** (5), basic **education** for all (4), etc.

2. Aims

We try to answer the following questions:

- Does **aid** increase **access** to safe water supply and sanitation?
- What is the role of aid for water supply and sanitation infrastructure?
- What is the role of aid for health **education**?

3. Theoretical framework

We rely on **consumer theory**:

U_{i,1} = utility of consuming the service $U_{i,0}$ = utility of NOT consuming the service

$$\Delta U_i(B_{i,1}, B_{i,0}, C_{i,1}, C_{i,0}) = U_{i,1}(B_{i,1}, C_{i,1}) - U_{i,0}(B_{i,0}, C_{i,0})$$

3. Theoretical framework

We rely on **consumer theory**:

 $U_{i,1}$ = utility of consuming the service

 $U_{i,2}$ = utility of NOT consuming the service

$$\Delta U_i(B_{i,1}, B_{i,0}, C_{i,1}, C_{i,0}) = U_{i,1}(B_{i,1}, C_{i,1}) - U_{i,0}(B_{i,0}, C_{i,0})$$

Aid for **infrastructure** may reduce the **costs** of access (time and monetary costs)

Wolf (2009)

Bain et al. (2013). Wayland (2013)

Gopalan and Rajan (2016)

Ndikumana and Pickbourn (2017)

3. Theoretical framework

We rely on **consumer theory**:

 $U_{i,1}$ = utility of consuming the service

 $U_{i,2}$ = utility of NOT consuming the service

$$\Delta U_i(B_{i,1}, B_{i,0}, C_{i,1}, C_{i,0}) = U_{i,1}(B_{i,1}, C_{i,1}) - U_{i,0}(B_{i,0}, C_{i,0})$$

Aid for health **education** may increase the expected **benefits** of access to safe water and sanitation

Aid for **infrastructure** may reduce the **costs** of access (time and monetary costs)

Wolf (2009)

Bain et al. (2013). Wayland (2013)

Gopalan and Rajan (2016)

Ndikumana and Pickbourn (2017)

4. Empirical strategy

We estimate a **fixed effects model** that takes into account the possible existence of unobservable heterogeneity among countries:

$$Acces\ rate_{jt} = \delta_{j} + \beta X_{jt} + u_{jt}$$

$$Acces\ rate_{jt} = \delta_{j}$$

$$+ \beta_{1} \log INF_{jt} + \beta_{2} \log EDU_{jt} + \beta_{3} (\log INF * \log EDU)_{jt}$$

$$+ \beta_{4} \log(Local\ government\ expenditure\ on\ health)_{jt}$$

$$+ \beta_{5} (Share\ of\ urban\ population)_{jt}$$

$$+ \beta_{6} (Literacy\ rate)_{jt}$$

$$+ \beta_{7} (Control\ of\ corruption)_{jt}$$

$$+ u_{jt}$$

5. Data

We have **macro panel data** (115 countries, 14 years, period 2002-2015) for the following variables:

- **D.** Access rate: WDI (World Bank)
- **I.1.** Aid for water supply and sanitation: CRS (OECD)
- **I.2.** Aid for education for health: CRS (OECD)
- **I.3.** Local government expenditure on health: WHO
- **I.4.** Share of urban population: WDI (World Bank)
- I.5. Literacy rate: WDI (World Bank)
- I.6. Control of corruption: WGI (World Bank)

6. Results

	National		Urban		Rural	
	Water	Sanitation	Water	Sanitation	Water	Sanitation
INFrastruct. _{t-1}	0.081 (0.087)	0.204 * (0.113)	0.157 * (0.083)	0.334 *** (0.109)	0.325 ** (0.144)	0.337 * (0.179)
EDUcation t-1	0.043 ** (0.017)	0.016 (0.020)	0.041 * (0.022)	0.052 ** (0.021)	0.105 *** (0.026)	0.055 (0.034)
INF*EDU	0.007 (0.005)	0.014* (0.007)	0.012 ** (0.005)	0.019 *** (0.007)	0.016 ** (0.008)	0.022 * (0.011)
Observations	1101	1108	1108	1108	1101	1108
Countries	115	1115	115	115	115	115
R ² (within)	0.44	0.52	0.07	0.20	0.30	0.31

Note: Robust standard errors clustered for countries in parenthesis.

^{***} p < 0.01, ** p < 0.05, * p < 0.1.

6. Results

	National		Urban		Rural	
	Water	Sanitation	Water	Sanitation	Water	Sanitation
INFrastruct. _{t-1}	0.081 (0.087)	0.204 * (0.113)	0.157 * (0.083)	0.334 *** (0.109)	0.325 ** (0.144)	0.337 * (0.179)
EDUcation t-1	0.043 ** (0.017)	0.016 (0.020)	0.041 * (0.022)	0 2**	0.105 *** (0.026)	0.055 (0.034)
INF*EDU	0.007 (0.005)	0.014* (0.007)	0.012** (0.005)	0.019 *** (0.007)	0.016** (0.008)	0.022 * (0.011)
Observations	1101	1108	1108	1108	1101	1108
Countries	115	1115	115	115	115	115
R ² (within)	0.44	0.52	0.07	0.20	0.30	0.31

Note: Robust standard errors clustered for countries in parenthesis.

^{***} p < 0.01, ** p < 0.05, * p < 0.1.

6. Results

	National		Urban		Rural	
	Water	Sanitation	Water	Sanitation	Water	Sanitation
INFrastruct. t-1	0.081 (0.087)	0.204 * (0.113)	0.157 * (0.083)	0.334*** (0.109)	0.325 ** (0.144)	0.337 * (0.179)
EDUcation t-1	0.043 ** (0.017)	0.016 (0.020)	0.041 * (0.022)	0.052 ** (0.021)	0.1 ***	0.055 (0.034)
INF*EDU	0.007 (0.005)	0.014 * (0.007)	0.012 ** (0.005)	0.019 *** (0.007)	0.016 ** (0.008)	0.022 * (0.011)
Observations	1101	1108	1108	1108	1101	1108
Countries	115	1115	115	115	115	115
R ² (within)	0.44	0.52	0.07	0.20	0.30	0.31

Note: Robust standard errors clustered for countries in parenthesis.

^{***} p < 0.01, ** p < 0.05, * p < 0.1.

7. Conclusions

- Aid for infrastructure seems to have a positive impact on access to water supply and sanitation services.
- Aid for health education also seems to have a positive impact, especially in rural areas.
- **BUT** it is **difficult** to evaluate the **effectiveness** of aid in **urban** and **rural** areas.
- We need better quality data.

Thank you