Introduction	Data	Results	Mechanisms
000000000	00000	000	00000

Shocks, Labor and Gender: Evidence from Panel Data in Rural India

Nikita Sangwan Indian Statistical Institute, Delhi

WIDER Development Conference

October 7, 2022

Introduction	Data	Results	Mechanisms
•00000000			

Extreme Weather Events

• Global warming has lead to rise in temperature

Figure: Source: IPCC Report

Introduction	Data	Results	Mechanisms
000000000	00000	000	00000

Motivation

 Accompanied by increased frequency of extreme weather events, including droughts, which are predicted to rise further if climate change continues unabated (World Bank 2013)

Figure: Source: IPCC Report

Introduction	Data	Results	Mechanisms
00●0000000	00000	000	00000
Motivation			

• In India a drought has been reported at least once every 3 yrs in last five decades (Mishra et al. 2009)

Figure: 5 yr MA of droughts in India 1901-2017 (Source: IMD)

Figure: Five year moving average of length of droughts between 1901-2017 across India (Source: IMD)

Figure: Five year moving average of intensity of droughts between 1901-2017 across India (Source: IMD)

Introduction	Data	Results	Mechanisms
000000000	00000	000	
	2		

Why does it matter?

- More than 75% of the world cropped area dependent on rain (India: 52%)
 - Drought hits agricultural output (Hertweck and Brey 2017), income (Yang 2007) and food security (Schlenker 2010)
- Significant proportion of the workforce is dependent on agriculture (India: 40%)
- Large gender disparities in employment rates (rural women: 35%, men 90%)
 - $\bullet\,$ Of the employed rural women about to 75% are engaged in farm work

Introduction	Data	Results	Mechanisms
000000000			

Reference

- The Gendered Effects of Droughts: Production Shocks and Labor Response in Agriculture Farzana Afridi (ISI Delhi), Kanika Mahajan (Ashoka University) and Nikita Sangwan (ISI Delhi)
- Weather Shocks and Labour Use in Agriculture: A Gender Perspective ongoing work

Introduction	Data	Results	Mechanisms
0000000000			

What we do?

- We use high frequency, household and individual level panel data that captures seasonal labor inputs during 2010-14 across 8 agro-climatic zones of India to understand the labour impacts of negative productivity shocks.
- Study individuals' labor response across farm and non-farm sectors to adverse productivity shocks, accounting for unobservable heterogeneity in their characteristics to analyse whether these impacts are gender neutral or not.
- What explains any observed gender differences in labor response?

Introduction	Data	Results	Mechanisms
0000000000			

What we do?

- We use high frequency, household and individual level panel data that captures seasonal labor inputs during 2010-14 across 8 agro-climatic zones of India to understand the labour impacts of negative productivity shocks.
- Study individuals' labor response across farm and non-farm sectors to adverse productivity shocks, accounting for unobservable heterogeneity in their characteristics to analyse whether these impacts are gender neutral or not.
- What explains any observed gender differences in labor response?

Introduction	Data	Results	Mechanisms
0000000000			

What we do?

- We use high frequency, household and individual level panel data that captures seasonal labor inputs during 2010-14 across 8 agro-climatic zones of India to understand the labour impacts of negative productivity shocks.
- Study individuals' labor response across farm and non-farm sectors to adverse productivity shocks, accounting for unobservable heterogeneity in their characteristics to analyse whether these impacts are gender neutral or not.
- What explains any observed gender differences in labor response?

Introduction	Data	Results	Mechanisms
000000000			

- Yield, income of farm households adversely affected due to rainfall shocks (Fishman, 2011; Burke & Emerick 2016).
- Potential adverse effect on earnings: Rainfall shocks may reduce daily wage for labor (Hertweck & Brey 2017) but areas with greater access to non-farm opportunities see a lower reduction in real wages when droughts occur (Jayachandran 2006)
- Absence of social insurance and incomplete credit markets, diversification of labor to non-farm sector (Kochar 1999; Rose 2001; Emerick 2018)
- Permanent migration due to climatic shocks and gendered impacts (Dillon et al. (2011); Gray & Mueller (2012); Baez et al. (2017): Mixed evidence)

Introduction	Data	Results	Mechanisms
000000000			

- Yield, income of farm households adversely affected due to rainfall shocks (Fishman, 2011; Burke & Emerick 2016).
- Potential adverse effect on earnings: Rainfall shocks may reduce daily wage for labor (Hertweck & Brey 2017) but areas with greater access to non-farm opportunities see a lower reduction in real wages when droughts occur (Jayachandran 2006)
- Absence of social insurance and incomplete credit markets, diversification of labor to non-farm sector (Kochar 1999; Rose 2001; Emerick 2018)
- Permanent migration due to climatic shocks and gendered impacts (Dillon et al. (2011); Gray & Mueller (2012); Baez et al. (2017): Mixed evidence)

Introduction	Data	Results	Mechanisms
000000000			

- Yield, income of farm households adversely affected due to rainfall shocks (Fishman, 2011; Burke & Emerick 2016).
- Potential adverse effect on earnings: Rainfall shocks may reduce daily wage for labor (Hertweck & Brey 2017) but areas with greater access to non-farm opportunities see a lower reduction in real wages when droughts occur (Jayachandran 2006)
- Absence of social insurance and incomplete credit markets, diversification of labor to non-farm sector (Kochar 1999; Rose 2001; Emerick 2018)
- Permanent migration due to climatic shocks and gendered impacts (Dillon et al. (2011); Gray & Mueller (2012); Baez et al. (2017): Mixed evidence)

Introduction	Data	Results	Mechanisms
000000000			

- Yield, income of farm households adversely affected due to rainfall shocks (Fishman, 2011; Burke & Emerick 2016).
- Potential adverse effect on earnings: Rainfall shocks may reduce daily wage for labor (Hertweck & Brey 2017) but areas with greater access to non-farm opportunities see a lower reduction in real wages when droughts occur (Jayachandran 2006)
- Absence of social insurance and incomplete credit markets, diversification of labor to non-farm sector (Kochar 1999; Rose 2001; Emerick 2018)
- Permanent migration due to climatic shocks and gendered impacts (Dillon et al. (2011); Gray & Mueller (2012); Baez et al. (2017): Mixed evidence)

Introduction	Data	Results	Mechanisms
000000000			

- Short-term labor adjustments, men may be better placed to take advantage of available coping mechanisms (Heath & Mobarak, 2015; Andrabi et al., 2013) yet much less is known about gender differences
 - \Rightarrow No differential impact in take up of non-farm work by gender using retrospective employment history in China (Huang et al. (2020))
 - \Rightarrow Male urban employment increases more than female urban employment in China during low rainfall years (Minale (2018))

Introduction	Data	Results	Mechanisms
000000000			

- Short-term labor adjustments, men may be better placed to take advantage of available coping mechanisms (Heath & Mobarak, 2015; Andrabi et al., 2013) yet much less is known about gender differences
 - \Rightarrow No differential impact in take up of non-farm work by gender using retrospective employment history in China (Huang et al. (2020))
 - \Rightarrow Male urban employment increases more than female urban employment in China during low rainfall years (Minale (2018))

Introduction	Data	Results	Mechanisms
00000000			

- Short-term labor adjustments, men may be better placed to take advantage of available coping mechanisms (Heath & Mobarak, 2015; Andrabi et al., 2013) yet much less is known about gender differences
 - \Rightarrow No differential impact in take up of non-farm work by gender using retrospective employment history in China (Huang et al. (2020))
 - \Rightarrow Male urban employment increases more than female urban employment in China during low rainfall years (Minale (2018))

Introduction	Data	Results	Mechanisms
000000000	●0000	000	00000

Data

- Labour & agricultural data: Village Dynamics in South Asia (VDSA) longitudinal survey data by ICRISAT
 - 30 villages across 8 states, Semi-Arid Tropics (SAT) and Humid Tropics regions Map
 - 40 households per village, Agricultural year (July to June)
 - Data on employment, agricultural cultivation and inputs
 - Monthly employment and earnings of all individuals recorded as household members
 - Individual employment panel, 2010-14 (aged 15 and above, 5,931 individuals from 1,367 households)
 - Participation, Workdays, Earnings by sector, Workplace location
 Summary Statistics

Introduction 000000000	Data 0●000	Results 000	Mechanisms 00000

Figure: Location Map (Source: http://vdsa.icrisat.ac.in/)

Introduction	Data	Results	Mechanisms
000000000	00000	000	00000

Data

- Climate Data: India Meteorological Department (IMD)
 - Daily gridded (0.25 × 0.25 degree) rainfall data (1971-2015)
 - Match the latitude-longitude of each sampled village to the nearest point on the grid
 - Drought: Monsoon rainfall (June-Sep) falls in the bottom two deciles of the long run average rainfall (1971-2014) for a village.
 - Is this a good measure?

Introduction	Data	Results	Mechanisms
000000000	00000	000	00000

Data

- Climate Data: India Meteorological Department (IMD)
 - Daily gridded (0.25 × 0.25 degree) rainfall data (1971-2015)
 - Match the latitude-longitude of each sampled village to the nearest point on the grid
 - Drought: Monsoon rainfall (June-Sep) falls in the bottom two deciles of the long run average rainfall (1971-2014) for a village.
 - Is this a good measure?

Introduction D	ata	Results	Mechanisms
000000000 O	00000	000	00000

Drought: Farm Output and Productivity (ICRISAT)

	Rice		All Crops	
	In(Output)	In(Yield)	In(Revenue)	In(Profit)
	(1)	(2)	(3)	(4)
Drought	-0.561**	-0.332*	-0.277	-0.495***
	(0.256)	(0.181)	(0.191)	(0.171)
Observations	114	114	11,606	11,606
R-squared	0.865	0.720	0.383	0.438
Mean Y	35067.19	4133.66	8404.209	-12540.13
Village FE Year FE Household FE Season FE Other controls	√ √	√ √	√ √ √	$\begin{array}{c} \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \end{array}$

Measure of drought accurately captures the scarcity of water

Introduction	Data	Results	Mechanisms
000000000	00000	000	00000

Empirical Strategy

$$y_{ihvmst} = \beta_0 + \beta_1 Drought_{vt} + \beta_2 X_{ihvst} + \delta Z_{hvt} + \pi S_{vt} + D_i + D_s + D_t + \epsilon_{ihvmst}$$

 y_{ihvst} : outcome for individual *i* in household *h*, in village *v*, in month m, in season *s* and year *t*; for workdays and earnings using the Inverse Hyperbolic Sine (IHS) transformation

 $Drought_{vt} = 1$ if a village v in year t faces a drought and zero otherwise

 X_{ihvst} : individual characteristics (marital status)

 Z_{hvt} : household level time-varying characteristics (demographic characteristics, index of real value of durables in the first year of the survey interacted with a linear time trend)

 S_{vt} : upper two deciles of monsoon rainfall in a village in a given year

- D_s : season fixed effect
- D_t : year fixed effect
- D_i : individual fixed effect

Standard errors clustered at the village-season level

Introduction	Data	Results	Mechanisms
		000	

Results: Overall Labor Market Outcomes

	Labor Force		Emp	loyed	Unemployed	
	Female (1)	Male (2)	Female (3)	Male (4)	Female (5)	Male (6)
Panel A: Intensive Margin (Workdays)						
Drought	-0.081	0.026	-0.153**	0.036	0.144*	-0.150*
	(0.082)	(0.047)	(0.073)	(0.048)	(0.079)	(0.089)
Difference	-0.107*		-0.190***		0.29	4***
	(0.0)59)	(0.055)		(0.0)82)
Observations R-squared	134,709 0.679	145,202 0.642	134,709 0.675	145,202 0.628	134,709 0.330	145,202 0.369

Greater fall in women's LFP relative to men's

Introduction	Data	Results	Mechanisms
000000000	00000	000	00000

Results: Work by sector

			Fa	arm			Livest	ock.	Non	-farm
	To	tal	Р	aid	Far	nily	Fam	ily		
	Female (1)	Male (2)	Female (3)	Male (4)	Female (5)	Male (6)	Female (7)	Male (8)	Female (9)	Male (10)
	Panel A: Intensive Margin (Workdays)									
Drought	-0.052 (0.092)	-0.068 (0.079)	0.016 (0.051)	-0.137** (0.058)	-0.053 (0.086)	-0.039 (0.073)	-0.210*** (0.080)	-0.020 (0.074)	0.024 (0.066)	0.225*** (0.061)
Difference	0.0 (0.0	016 076)	0.1 (0.	53 ^{**} 065)	-0. (0.0	015)77)	- <mark>0.18</mark> (0.08	9** ´ 35)	- <mark>0.2</mark> (0.	01*** ´ 071)
Observations R-squared	134,709 0.615	145,202 0.613	134,709 0.623	145,202 0.527	134,709 0.605	145,202 0.632	134,709 0.678	145,202 0.687	134,709 0.629	145,202 0.704

Men diversify to non-farm sector from farm sector, women do not

Introduction	Data	Results	Mechanisms
		000	

Results: Monthly Wage Earnings

	Monthly Earnings			Mont	Monthly Earnings (Conditional)			Daily Wage Rate				
	Paid	l Farm	Non-farm		Paid F	Paid Farm Non-farm		Paid Farm		Non-farm		
	Female	Male	Female	Male	Female	Male	Female	Male	Female	Male	Female	Male
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
Drought	0.005	-0.185***	-0.010	0.175**	-0.381***	-0.034	-0.100	-0.090**	-0.114***	0.036	-0.073	-0.081***
Difference	(0.056)	(0.064)	(0.072)	(0.075)	(0.079)	(0.106)	(0.092)	(0.040)	(0.037)	(0.059)	(0.048)	(0.029)
	<mark>0.1</mark>	1 <mark>89**</mark>	- <mark>0.1</mark>	<mark>86**</mark>	-0.347	7***	-0	.010	- <mark>0.15</mark>	1**	0	.008
	(0	.073)	(0.0	085)	(0.13	19)	(0.	083)	(0.06	55)	(0	.051)
Observations	134,709	145,202	134,709	145,202	23,647	17,627	16,645	67,809	23,647	17,627	16,645	67,809
R-squared	0.622	0.526	0.642	0.723	0.425	0.498	0.725	0.728	0.619	0.628	0.777	0.781

Conditional on working women experience a relatively larger fall in farm wage rates

Introduction	Data	Results	Mechanisms
			00000

Mechanism: Mobility

- Mobility
 - Analyses of work location
 - Gender Norms (burden of home production and sexual purity)
 - Heterogeneity checks

Introduction	Data	Results	Mechanisms
			00000

Mechanisms: Place of Work

	Within Village		Outsid	e Village	Migr	Migration		Distance to Work	
	Female (1)	Male (2)	Female (3)	Male (4)	Female (5)	Male (6)	Female (7)	Male (8)	
Drought	0.004	-0.010	-0.000	0.017***	0.001	0.008**	-0.012	0.199***	
	(0.006)	(0.006)	(0.003)	(0.006)	(0.001)	(0.003)	(0.028)	(0.074)	
Difference	0.01	L4**	-0.0	18***	-0.0	07**	-0.2	11***	
	(0.0	007)	(0.	006)	(0.0	003)	(0.	071)	
Observations	134,709	145,202	134,709	145,202	134,709	145,202	134,709	145,202	
R-squared	0.659	0.603	0.588	0.675	0.643	0.721	0.606	0.701	
Mean Y	0.25	0.29	0.04	0.29	0.02	0.13	77.10	2179.13	

Men cast a wider network in search of work relative to women

Introduction	Data	Results	Mechanisms
00000000	00000	000	00000

Potential Role of Social Protection: Employment Guarantee

	VD	SA	NREG	5 Portal	
	Female	Male	Female	Male	
	(1)	(2)	(3)	(4)	
Drought	0.127	0.011	0.370***	0.335***	
	(0.157)	(0.276)	(0.074)	(0.073)	
Difference	0.1	115	0.035*		
	(0.2	243)	(0.019)		
Observations	5,195	5,641	405,105	405,105	
R-squared	0.640	0.521	0.700	0.697	
Mean Y	3.6	3.39	2774.52	3394.71	
Individual FE	\checkmark	\checkmark			
Year FE	\checkmark	\checkmark	\checkmark	\checkmark	
GP FE			\checkmark	\checkmark	
Other controls	\checkmark	\checkmark	\checkmark	\checkmark	

Provision of employment close to home helps women cope with negative income shocks more than men

Introduction	Data	Results	Mechanisms
000000000	00000	000	000●0

- Men substitute to non-farm work in response to drought shocks.
- Women drop-out of labor force entirely, while of those working, disproportionately more women are engaged in riskier agricultural work.
- Persistent extreme weather events due to climate change may exacerbate existing gender inequities in the labor market.
- Policy that mitigates production risks in agriculture should have a gender focus, e.g. job guarantees (NREGA), can help women cope with such shocks.

Introduction	Data	Results	Mechanisms
000000000	00000	000	000●0

Extreme weather events have gendered effects if women's labor mobility is constrained

• Men substitute to non-farm work in response to drought shocks.

- Women drop-out of labor force entirely, while of those working, disproportionately more women are engaged in riskier agricultural work.
- Persistent extreme weather events due to climate change may exacerbate existing gender inequities in the labor market.
- Policy that mitigates production risks in agriculture should have a gender focus, e.g. job guarantees (NREGA), can help women cope with such shocks.

Introduction	Data	Results	Mechanisms
000000000	00000	000	000●0
6			

- Men substitute to non-farm work in response to drought shocks.
- Women drop-out of labor force entirely, while of those working, disproportionately more women are engaged in riskier agricultural work.
- Persistent extreme weather events due to climate change may exacerbate existing gender inequities in the labor market.
- Policy that mitigates production risks in agriculture should have a gender focus, e.g. job guarantees (NREGA), can help women cope with such shocks.

Introduction	Data	Results	Mechanisms
000000000	00000	000	000●0
<u> </u>			

- Men substitute to non-farm work in response to drought shocks.
- Women drop-out of labor force entirely, while of those working, disproportionately more women are engaged in riskier agricultural work.
- Persistent extreme weather events due to climate change may exacerbate existing gender inequities in the labor market.
- Policy that mitigates production risks in agriculture should have a gender focus, e.g. job guarantees (NREGA), can help women cope with such shocks.

Introduction	Data	Results	Mechanisms
000000000	00000	000	000●0
<u> </u>			

- Men substitute to non-farm work in response to drought shocks.
- Women drop-out of labor force entirely, while of those working, disproportionately more women are engaged in riskier agricultural work.
- Persistent extreme weather events due to climate change may exacerbate existing gender inequities in the labor market.
- Policy that mitigates production risks in agriculture should have a gender focus, e.g. job guarantees (NREGA), can help women cope with such shocks.

Introduction	Data	Results	Mechanisms
			00000

APPENDIX

Results: Overall

	Labor	Force	Empl	loyed	Unemployed	
	Female	Male	Female	Male	Female	Male
	(1)	(2)	(3)	(4)	(5)	(6)
	Panel /	A: Extensiv	ve Margin (F	Participatio	n)	
Drought	-0.006	0.006*	-0.012*	0.005	0.016*	-0.016
	(0.007)	(0.003)	(0.006)	(0.003)	(0.008)	(0.010
Difference	-0.0	12**	- <mark>0.01</mark>	7***	0.03	2***
	(0.0)06)	(0.0	005)	(0.0	009)
Observations	134,709	145,202	134,709	145,202	134,709	145,20
R-squared	0.654	0.569	0.651	0.560	0.295	0.348
Mean Y	0.69	0.92	0.68	0.92	0.06	0.1
	Pane	l B: Intens	ive Margin ((Workdays)		
Drought	-0.081 (0.082)	0.026	-0.153** (0.073)	0.036	0.144* (0.079)	-0.150 (0.089
Difference	-0.1	.07*	-0.19	0***	0.29	4***
	(0.0)59)	(0.0	055)	(0.0)82)
Observations	134,709	145,202	134,709	145,202	134,709	145,20
R-squared	0.679	0.642	0.675	0.628	0.330	0.369

Greater fall in women's LFP relative to men's

Results: Work by sector

			F	arm			Lives	tock	Nor	ı-farm
	To	tal	F	Paid	Far	nily	Fam	nily		
	Female	Male	Female	Male	Female	Male	Female	Male	Female	Male
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
			Pane	el A: Extensiv	/e Margin (Participati	on)			
Drought	-0.009	-0.003	0.005	-0.016***	-0.011	-0.002	-0.016*	0.003	0.003	0.021***
	(0.010)	(0.008)	(0.005)	(0.006)	(0.010)	(0.008)	(0.009)	(0.009)	(0.006)	(0.005)
Difference	-0.	005	0.0	21***	-0.	009	- <mark>0.01</mark>	9**	- <mark>0.0</mark>	18***
	(0.0	008)	(0	.007)	(0.0	008)	(0.0	09)	(0.	007)
Observations	134,709	145,202	134,709	145,202	134,709	145,202	134,709	145,202	134,709	145,202
R-squared	0.603	0.582	0.611	0.519	0.596	0.598	0.681	0.669	0.612	0.690
Mean Y	0.45	0.54	0.18	0.12	0.36	0.5	0.42	0.44	0.12	0.47
			Pa	nel B: Intens	ive Margin	(Workdays	5)			
Drought Difference	-0.052 (0.092) 0.0 (0.0	-0.068 (0.079) 016 076)	0.016 (0.051) 0.1 (0	-0.137** (0.058) 53** .065)	-0.053 (0.086) -0.1 (0.0	-0.039 (0.073) 015 077)	-0.210*** (0.080) - <mark>0.18</mark> (0.0	-0.020 (0.074) 9** 85)	0.024 (0.066) -0.2 (0.	0.225*** (0.061) 01*** 071)
Observations	134,709	145,202	134,709	145,202	134,709	145,202	134,709	145,202	134,709	145,202
R-squared	0.615	0.613	0.623	0.527	0.605	0.632	0.678	0.687	0.629	0.704

Men diversify to non-farm sector from farm sector, women do not

EXTENSIONS

Work in progress ○●○○○○○○○○

Labor demand (per-acre)

VARIABLES	(1)	(2) Overall	(3)	(4) Famil	(5) y Farm	(6) Hired	(7) Farm
	Total	Female	Male	Female	Male	Female	Male
Drought	-0.172***	-0.422***	-0.0435	-0.243*	-0.0685	-0.381***	0.161
	(0.0491)	(0.0805)	(0.0630)	(0.128)	(0.0749)	(0.123)	(0.123)
Difference	. ,	-0.379	9* [*] *	-0.	175	-0.541	***
		(0.1	01)	(0.	122)	(0.15	50)
Observations	8,653	8,653	8,653	8,653	8,653	8,653	8,653
R-squared	0.561	0.526	0.578	0.707	0.644	0.503	0.530

Greater fall in demand for female labor. Driven by a greater fall in hired labor

Results: Labor demand by operation (per-acre)

Operation	Prepa	ration	Sowing		Weed	ding	Harvesting	
	Female	Male	Female	Male	Female	Male	Female	Male
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Drought	-0.0262	0.107	0.114	0.168*	-0.613***	-0.243**	-0.453***	-0.00973
	(0.101)	(0.110)	(0.105)	(0.0981)	(0.160)	(0.0955)	(0.128)	(0.138)
Difference	-0.1	133	-0.0534 -0.370** -0.443		3***			
	(0.1	.74)	(0.0990) (0.164) (0.16		67)			
Observations	8,653	8,653	8,653	8,653	8,653	8,653	8,653	8,653
R-squared	0.438	0.541	0.455	0.478	0.501	0.405	0.440	0.413
Mean Y	13.55	37.62	12.5	13.88	91.37	16.46	149.55	71.47

Greater fall in demand for female labor. Driven by a greater fall in hired labor

Table 6 Effect of women's workdays on household expenditure (per-capita).

Categories	Food (1)	Non-food (2)	Education (3)	Medical (4)	Addiction (5)	Fuel/Energy (6)
Paid Workdays	0.0073**	-0.0292***	0.0169	-0.0574***	-0.0345***	-0.0030
	(0.0031)	(0.0063)	(0.0185)	(0.0133)	(0.0105)	(0.0048)
Unpaid Workdays	0.0170***	-0.0068	0.0273	-0.0237	0.0018	0.0043
	(0.0030)	(0.0066)	(0.0194)	(0.0151)	(0.0116)	(0.0047)
Observations	12,375	12,375	12,375	12,375	12,375	12,375
R-squared	0.7883	0.5303	0.5870	0.4129	0.7005	0.7289
p-val[Paid = Unpaid]	0.01	0	0.64	0.04	0.01	0.19
Controls	1	1	1	1	1	1
Household FE	-	1	1	1	1	1
Year FE	-	1	1	1	1	1
Season FE	1	1	1	1	1	1
Village yearly trends	1	1	1	1	1	1

Source: http://vdsa.icrisat.ac.in/VDSA micro level household data (2009-2014).

Note: All dependent variables and workdays (Paid and Unpaid) are in log terms using HIS transformation. The row "p-val[Paid – Unpaid] "reports the p-value of the test of difference in the coefficient of paid and unpaid workdays. Controls include time-variant household characteristics—demographics (number of children, working-age women and working-age men), average education level of the household (for members above 14 years of age), distance from the nearest market, interaction of endowed assets and wealth with year fixed effects, real seasonal men wages and domestic workdays of men. Standard errors clustered at the household level in parentheses (**** p < 0.01, *** p < 0.01, *** p < 0.01, *** p < 0.01, ***

Results: Decision-making within the household

VARIABLES	Women decision	Men Decision	Joint decision
Drought	-0.092***	0.061	0.176**
	(0.032)	(0.072)	(0.073)
Observations	4,256	4,256	4,256
R-squared	0.621	0.444	0.462

Fall in decisions made independently by women and increased joint-decision making

Work in progress

- Examine the labor responses of all members of the household (Inter-sectionality of gender, age, caste)
- Persistence of the impact of weather shocks
- Role of mechanisation as a coping strategy

Figure: Location Map (Source: http://vdsa.icrisat.ac.in/)

Alternative Mechanisms: Skills (VDSA, ICRISAT)

	Unskilled		Skilled		Business	Business/Salaried	
	Female (1)	Male (2)	Female (3)	Male (4)	Female (5)	Male (6)	
Drought	0.002 (0.017)	0.106** (0.047)	0.029	0.061 (0.044)	-0.038 (0.040)	0.039 (0.036)	
Difference	-0.10 (0.0)44)	-0.0 (0.0) 032 050)	-0.0 (0.0	078 048)	
Observations R-squared	134,709 0.448	145,202 0.585	134,709 0.558	145,202 0.644	134,709 0.654	145,202 0.711	
Individual FE Season FE Year FE Other controls	\checkmark	\checkmark	\checkmark	√ √ √	✓ ✓ ✓	\checkmark	

Skill deficit doesn't explain the results

Alternative Mechanisms: Safety (NSS)

District characteristic (Z) :	Crime N	leasure 1	Crime N	leasure 2
	Female	Male	Female	Male
	(1)	(2)	(3)	(4)
(A) Drought	-0.028	0.066	-0.031	0.066
	(0.026)	(0.043)	(0.026)	(0.043)
(B) $Z \times Drought$	0.059	0.057	0.063	0.058
., -	(0.043)	(0.059)	(0.043)	(0.059)
D:(((A)	0	004		0.07
Difference (A)	-0.	094	-0.0	097
D: ((A) + (D))	[U.	03]	[U.	02]
Difference ((A)+(B))	-0.	092	-0.0	092
	Į0.	03]	Į0.	03]
Observations	415,987	419,512	415,987	419,512
R-squared	0.078	0.149	0.078	0.149
Mean $(Z=0)$	0.47	2.37	0.46	2.36
Mean (Z=1)	0.58	2.42	0.59	2.42
District FE	\checkmark	\checkmark	\checkmark	~
Year FE	\checkmark	\checkmark	\checkmark	\checkmark
Other controls	\checkmark	\checkmark	\checkmark	\checkmark

Safety concerns don't explain the results

	Employed		Farm				Livestock		Non-farm		
			Paid		Family		Family				
	Female	Male	Female	Male	Female	Male	Female	Male	Female	Male	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	
Panel A: Balanced Sample											
Drought	-0.200**	-0.004	-0.015	-0.155**	-0.035	-0.029	-0.257***	-0.053	0.029	0.178***	
	(0.084)	(0.047)	(0.056)	(0.070)	(0.094)	(0.072)	(0.096)	(0.085)	(0.077)	(0.061)	
Difference	-0.19	6***	0.1	.40*	-0.	007	-0.205**		-0.149*		
	(0.0	066)	(0.	075)	(0.0)80)	(0.0	97)	(0.078)		
Observations	97,025	109,295	97,025	109,295	97,025	109,295	97,025	109,295	97,025	109,295	
R-squared	0.644	0.525	0.627	0.522	0.603	0.636	0.669	0.693	0.627	0.700	
Panel B: Unconditional Sample											
Drought	-0.107	0.028	0.020	-0.141**	-0.038	-0.053	-0.170**	-0.033	0.033	0.234***	
0	(0.076)	(0.053)	(0.050)	(0.056)	(0.083)	(0.073)	(0.080)	(0.075)	(0.064)	(0.057)	
Difference	-0.13	35 [*] *	0.160** 0.015)15	-0.137		-0.202***			
	(0.0)59)	(0.	(0.063) (0.075))75)	(0.089)		(0.065)		
Observations	140,184	151,608	140,184	151,608	140,184	151,608	140,184	151,608	140,184	151,608	
R-squared	0.652	0.592	0.615	0.520	0.601	0.627	0.662	0.670	0.607	0.683	
Panel C: Village-specific annual trends											
Drought	-0.129*	0.021	-0.017	-0.067	-0.056	-0.005	-0.123*	-0.107*	0.002	0.136**	
0	(0.074)	(0.038)	(0.046)	(0.048)	(0.081)	(0.077)	(0.070)	(0.056)	(0.057)	(0.054)	
Difference	ence -0.149*** 0.051		05Ì	-0.051		-0.015		-0.134**			
	(0.0	(0.056)		(0.065)		(0.051)		(0.062)		(0.064)	
								,			
Observations	134,709	145,202	134,709	145,202	134,709	145,202	134,709	145,202	134,709	145,202	
R-squared	0.680	0.633	0.628	0.533	0.615	0.639	0.685	0.696	0.632	0.708	

Table: Effect of Drought on Workdays: Robustness

appendix	Work in progress	Robustness Checks
		000

Table: Effect of Drought on Workdays: Robustness (Additional Specifications)

		Lagged	shocks		Temperature and its square				
	Paid	Farm	Non-farm		Paid Farm		Non-farm		
	Female (1)	Male (2)	Female (3)	Male (4)	Female (5)	Male (6)	Female (7)	Male (8)	
Drought	0.011	-0.179***	0.048	0.211***	0.006	-0.139*	-0.006	0.230***	
Lag Drought	(0.058) 0.100 (0.064)	(0.066) 0.011 (0.066)	(0.081) -0.008 (0.053)	(0.073) -0.141* (0.079)	(0.066)	(0.076)	(0.088)	(0.071)	
Temp	· ,	()	· /	()	0.002	0.006	0.005	-0.005	
$Temp^2$					(0.003) -0.000 (0.000)	(0.004) -0.000** (0.000)	(0.004) -0.000 (0.000)	(0.003) 0.000* (0.000)	
Difference	0.190*** (0.069)		-0.163* (0.093)		0.145* (0.078)		-0.237*** (0.082)		
Observations R-squared	134,709 0.624	145,202 0.527	134,709 0.629	145,202 0.704	134,709 0.623	145,202 0.527	134,709 0.629	145,202 0.704	

Back

Table: Effect of Drought on Workdays: Robustness (Alternative measures)

		Drought I	Measure 1		Drought Measure 2				
	Paid	Farm	Non-farm		Paid Farm		Non-farm		
	Female (1)	Male (2)	Female (3)	Male (4)	Female (5)	Male (6)	Female (7)	Male (8)	
Drought	0.002	0.049	-0.023	0.101**	-0.000	-0.003***	-0.000	0.003**	
	(0.040)	(0.040)	(0.034)	(0.048)	(0.001)	(0.001)	(0.001)	(0.001)	
Difference	-0.047		-0.124***		0.003***		-0.003**		
	(0.0)47)	(0.0	042)	(0.001)		(0.001)		
Observations R-squared	134,709 0.623	145,202 0.526	134,709 0.629	145,202 0.704	134,709 0.623	145,202 0.527	134,709 0.629	145,202 0.704	

Back