Responses to Temperature Shocks: Labor Markets and Migration Decisions in El Salvador

Ana Maria Ibáñez¹ Juliana Quigua¹ Jimena Romero² Andrea Velásquez³

¹Interamerican Development Bank

²Stockholm University

³University of Colorado Denver

Motivation

Evolution of global mean surface temperature

Source: IPCC (https://www.ipcc.ch/sr15/graphics/)

Motivation

Source: New York Times

2

What are the responses to temperature shocks in El Salvador?

1. Measure effect of extreme temperatures on agricultural production of corn

Production of Corn and Other Staple Crops

Source: FAOSTAT. Staple crops include corn (maize), rice, sorghum, and beans.

What are the responses to temperature shocks in El Salvador?

1. Measure effect of extreme temperatures on agricultural production of corn \Rightarrow Negative effect on total production

- 1. Measure effect of extreme temperatures on agricultural production of corn \Rightarrow Negative effect on total production
- 2. Adjustments through **local labor markets**:

- 1. Measure effect of extreme temperatures on agricultural production of corn \Rightarrow Negative effect on total production
- 2. Adjustments through local labor markets:
 - $\ensuremath{\Downarrow}$ labor demand of agricultural workers
 - $\Downarrow \ \mathsf{hourly} \ \mathsf{wages}$

- 1. Measure effect of extreme temperatures on agricultural production of corn \Rightarrow Negative effect on total production
- 2. Adjustments through local labor markets:
 - \Downarrow labor demand of agricultural workers
 - ↓ hourly wages
 - non-agricultural sector cannot absorb workers displaced from agricultural sector

- 1. Measure effect of extreme temperatures on agricultural production of corn \Rightarrow Negative effect on total production
- 2. Adjustments through local labor markets:
 - \Downarrow labor demand of agricultural workers
 - ↓ hourly wages
 - non-agricultural sector cannot absorb workers displaced from agricultural sector
- 3. Adjustments through international migration

- 1. Measure effect of extreme temperatures on agricultural production of corn \Rightarrow Negative effect on total production
- 2. Adjustments through local labor markets:
 - \downarrow labor demand of agricultural workers
 - ↓ hourly wages
 - non-agricultural sector cannot absorb workers displaced from agricultural sector
- 3. Adjustments through international migration
- 4. Heterogeneous effects by landownership and access to risk-coping mechanisms
 - Migrant networks
 - Access to financial markets

Contributions

- 1. Responses to weather shocks and natural disasters:
 - In using microdata, we are able to identify the responses of farmers and agricultural workers to temperature shocks
 - This allows us to identify more fine-grained policy recommendations

Contributions

- 1. Responses to weather shocks and natural disasters:
 - In using microdata, we are able to identify the responses of farmers and agricultural workers to temperature shocks
 - This allows us to identify more fine-grained policy recommendations
- 2. Effect of temperature shocks on agricultural production, labor markets and migration in developing countries:
 - Incomplete markets and a small non-agricultural sector push rural households to rely on migration
 - But households are constrained by migration costs

Contributions

- 1. Responses to weather shocks and natural disasters:
 - In using microdata, we are able to identify the responses of farmers and agricultural workers to temperature shocks
 - This allows us to identify more fine-grained policy recommendations
- 2. Effect of temperature shocks on agricultural production, labor markets and migration in developing countries:
 - Incomplete markets and a small non-agricultural sector push rural households to rely on migration
 - But households are constrained by migration costs
- 3. Consequence of climate change and the adaptation strategies used by households:
 - Addressing negative impacts of climate change must be a shared global responsibility

Migration and weather shocks in El Salvador

 By 2017, 30% of working-age individuals born in El Salvador were living in the U.S.

Migration and weather shocks in El Salvador

- By 2017, 30% of working-age individuals born in El Salvador were living in the U.S.
- Highly vulnerable to weather shocks
 - During the last decade, 3 extreme droughts

Migration and weather shocks in El Salvador

- By 2017, 30% of working-age individuals born in El Salvador were living in the U.S.
- Highly vulnerable to weather shocks
 - During the last decade, 3 extreme droughts
- Mostly subsistence agriculture and highly dependent on the rain cycle:
 - 87% of agricultural producers are small farmers: average land size 1.2 hectares
 - 1.4% of the land is irrigated

Source: New York Times

Data

Agricultural Survey: Encuesta Nacional Agropecuaria de Propósitos Múltiples (ENAMP): 2013-2018

- Cross-sectional survey of agricultural producers representative at the national and regional level
- Agricultural production and labor demand outcomes

Data

Agricultural Survey: Encuesta Nacional Agropecuaria de Propósitos Múltiples (ENAMP): 2013-2018

- Cross-sectional survey of agricultural producers representative at the national and regional level
- Agricultural production and labor demand outcomes

Household Survey: Encuesta a Hogares de Propósitos Múltiples (EHPM): 2010-2018

- Cross-sectional survey representative at the national and regional level
- Migration and labor outcomes

Temperature - Degree Celsius

NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature and Emissivity: 2010-2018

- 1 km grid
- 8-day average
- Average at the municipality level

High temperature shock

- Number of "hot" weeks during agricultural season (primera) at municipality level
- "hot" =1 if temperature is 2 standard deviations above the historical mean (2001-2006)

Temperature shocks: temporal and geographic variation

Figure 1: Average Temperature in El Salvador

Temperature shocks: temporal and geographic variation

Figure 2: Number of hot weeks per municipality during main harvest season

Predicted Effects of Temperature Shocks

1. Temperature increases:

 $\ensuremath{\Downarrow}$ agricultural production (total production and production per hectare)

$$log(y_{ijt}) = \alpha + \delta_1 T_{ijt} + X'_{ijt} \gamma + \beta Z_{jt} + \mu_j + \phi_t + W'_{j2005} * t + \epsilon_{ijt}$$
 (1)

y_{ijt}: = Crop yield (total yield or yield per hectare) of agricultural producers i, living in municipality j, in year t during harvest season

$$log(y_{ijt}) = \alpha + \frac{\delta_1}{T_{ijt}} + X'_{ijt}\gamma + \beta Z_{jt} + \mu_j + \phi_t + W'_{j2005} * t + \epsilon_{ijt}$$
 (1)

- y_{ijt} : = Crop yield (total yield or yield per hectare) of agricultural producers i, living in municipality j, in year t during harvest season
- T_{ijt} : # of weeks with a temperature shock in contemporaneous harvest season t

$$log(y_{ijt}) = \alpha + \frac{\delta_1}{T_{ijt}} + X'_{ijt}\gamma + \beta Z_{jt} + \mu_j + \phi_t + W'_{j2005} * t + \epsilon_{ijt}$$
 (1)

- y_{ijt}: = Crop yield (total yield or yield per hectare) of agricultural producers i, living in municipality j, in year t during harvest season
- T_{ijt}: # of weeks with a temperature shock in contemporaneous harvest season t
- X'_{ijt} : controls at the producer level

$$log(y_{ijt}) = \alpha + \frac{\delta_1}{T_{ijt}} + X'_{ijt}\gamma + \beta Z_{jt} + \mu_j + \phi_t + W'_{j2005} * t + \epsilon_{ijt}$$
 (1)

- y_{ijt}: = Crop yield (total yield or yield per hectare) of agricultural producers i, living in municipality j, in year t during harvest season
- T_{ijt} : # of weeks with a temperature shock in contemporaneous harvest season t
- X'_iit: controls at the producer level
- Z_{jt}: controls at the municipality level j and year t (including weather and crime variables)

$$log(y_{ijt}) = \alpha + \frac{\delta_1}{T_{ijt}} + X'_{ijt}\gamma + \beta Z_{jt} + \mu_j + \phi_t + W'_{j2005} * t + \epsilon_{ijt}$$
 (1)

- y_{ijt}: = Crop yield (total yield or yield per hectare) of agricultural producers i, living in municipality j, in year t during harvest season
- T_{ijt} : # of weeks with a temperature shock in contemporaneous harvest season t
- X'_iit: controls at the producer level
- Z_{jt}: controls at the municipality level j and year t (including weather and crime variables)
- ullet $\mu_j,\ \phi_t$: municipality and year fixed effects

$$log(y_{ijt}) = \alpha + \frac{\delta_1}{T_{ijt}} + X'_{ijt} + \beta Z_{jt} + \mu_j + \phi_t + W'_{j2005} * t + \epsilon_{ijt}$$
 (1)

- y_{ijt}: = Crop yield (total yield or yield per hectare) of agricultural producers i, living in municipality j, in year t during harvest season
- T_{ijt} : # of weeks with a temperature shock in contemporaneous harvest season t
- X'_{iit} : controls at the producer level
- Z_{jt}: controls at the municipality level j and year t (including weather and crime variables)
- ullet μ_j , ϕ_t : municipality and year fixed effects
- $W'_{j2005} * t$: municipality j baseline socioeconomic controls * year t
- Clustered standard errors: municipality and year
 - Results robust to using Conley standard errors to account for spatial correlation

1 additional week with extreme temperature ⇒ ↓ total corn production by 2.8% and land productivity by 5.4%

1 additional week with extreme temperature \Rightarrow \downarrow total corn production by **2.8%** and land productivity by **5.4%** \Rightarrow adjustment through use of land (Aragon, Oteiza, Rud, 2021).

1 SD ↑ in the temperature shock ⇒ ↓ total corn production by 1.6% and land productivity by 3.1% ⇒ adjustment through use of land (Aragon, Oteiza, Rud, 2021).

Predicted Effects of Temperature Shocks

- 2. Farmers adjust in the short term to protect agricultural profits and smooth consumption
 - ⇒ adjustments through use of agricultural inputs:

Predicted Effects of Temperature Shocks

- 2. Farmers adjust in the short term to protect agricultural profits and smooth consumption
 - ⇒ adjustments through use of agricultural inputs:
 - \$\psi\$ chemical agents mostly used for post-harvest activities

- 2. Farmers adjust in the short term to protect agricultural profits and smooth consumption
 - ⇒ adjustments through local labor market

- 2. Farmers adjust in the short term to protect agricultural profits and smooth consumption
 - ⇒ adjustments through local labor market
 - Lower demand of agricultural workers
 - Substitution between hired and household workers

- 2. Farmers adjust in the short term to protect agricultural profits and smooth consumption
 - ⇒ adjustments through local labor market
 - Lower demand of agricultural workers
 - Substitution between hired and household workers

Type of worker	All Workers	Non HH Workers	Household Workers
Temperature shock t	-0.018*	-0.029**	0.015
	(0.011)	(0.012)	(0.015)
R^2	0.103	0.113	0.231
Mean	2.17	1.53	1.1
Observations	18,845	18,845	18,845

Dependent variable is the Hyperbolic Sine Transformation of Y

^{*}p<0.1; **p<0.05; ***p<0.01

3. Adjustment through local labor market depend on land ownerhsip:

3.1 If landowner:

- demand and supply labor simultaneously
- increases working hours on own land
- reduction in wages, may provide an insurance mechanism to landowners in regions with incomplete financial markets (Jayachandran, 2006)

- 3. Adjustment through local labor market depend on land ownerhsip:
 - 3.1 If landowner:
 - demand and supply labor simultaneously
 - increases working hours on own land
 - reduction in wages, may provide an insurance mechanism to landowners in regions with incomplete financial markets (Jayachandran, 2006)
 - 3.2 If non-landowner:
 - reallocates within agricultural sector or to the non-agricultural sector
 - migrates

Population Group	Employed	Log Hours	Log Hourly Wage
Panel A: Individuals in Agri HH (seasonal)			
Individuals in Landowner HHs	0.001	0.010	-0.014
	(0.002)	(0.004)**	(0.007)**
Obs	78,884	42,201	18,252
Individuals in Non-Landowner HHs	-0.009	0.005	0.006
	(0.004)**	(800.0)	(800.0)
Obs	12,796	7,162	6,656
Panel B: Nonagricultural HH			
All HH	0.000	-0.001	0.000
АППП			
	(0.001)	(0.003)	(0.003)
Obs	323,896	185,573	167,507

Standard errors in parentheses clustered by municipality and year. $^*p<0.1;$ $^{**}p<0.05;$ $^{***}p<0.01$

Population Group	Employed	Log Hours	Log Hourly Wage
Panel A: Individuals in Agri HH (seasonal)			
Individuals in Landowner HHs	0.001	0.010	-0.014
	(0.002)	(0.004)**	(0.007)**
Obs	78,884	42,201	18,252
Individuals in Non-Landowner HHs	-0.009	0.005	0.006
	(0.004)**	(800.0)	(800.0)
Obs	12,796	7,162	6,656
Panel B: Nonagricultural HH			
All HH	0.000	-0.001	0.000
	(0.001)	(0.003)	(0.003)
Obs	323,896	185,573	167,507

Standard errors in parentheses clustered by municipality and year. p<0.1; p<0.05; p<0.01

- ↓ probability of working for non-landowner agricultural workers
- No evidence of reallocation to non-agricultural sector Pevidence

Population Group	Employed	Log Hours	Log Hourly Wage
D 14 1 1:1 1 : 4 : 111 (
Panel A: Individuals in Agri HH (seasonal)			
Individuals in Landowner HHs	0.001	0.010	-0.014
	(0.002)	(0.004)**	(0.007)**
Obs	78,884	42,201	18,252
Individuals in Non-Landowner HHs	-0.009	0.005	0.006
	(0.004)**	(0.008)	(0.008)
Obs	12,796	7,162	6,656
Panel B: Nonagricultural HH			
All HH	0.000	-0.001	0.000
	(0.001)	(0.003)	(0.003)
Obs	323,896	185,573	167,507

Standard errors in parentheses clustered by municipality and year. $^*p<0.1;$ $^{**}p<0.05;$ $^{***}p<0.01$

• Workers in landowning households increase working hours

Population Group	Employed	Log Hours	Log Hourly Wage
Panel A: Individuals in Agri HH (seasonal)			
Individuals in Landowner HHs	0.001	0.010	-0.014
	(0.002)	(0.004)**	(0.007)**
Obs	78,884	42,201	18,252
Individuals in Non-Landowner HHs	-0.009	0.005	0.006
	(0.004)**	(0.008)	(800.0)
Obs	12,796	7,162	6,656
Panel B: Nonagricultural HH			
All HH	0.000	-0.001	0.000
	(0.001)	(0.003)	(0.003)
Obs	323,896	185,573	167,507

Standard errors in parentheses clustered by municipality and year. *p<0.1; **p<0.05; ***p<0.01

Landowner households adjust by lowering hourly wages

- 4. To compensate for income fall agricultural workers reallocate to other sectors or migrate
 - Migration measured as the probability that a member of the household migrated internationally during the survey year

Probability of International Migration

One additional week with extreme temperature increased the likelihood of migration by 20.1% relative to the mean among agricultural households

- 4. Effect on agricultural labor markets and migration depend on access to risk-coping mechanisms:
 - If no access to risk-coping mechanisms, effects transmits to agricultural labor market,
 ↓ agricultural wages and more reliance on migration
 - If access to risk coping mechanisms, effect does not transmit to agricultural labor market, and less reliance on migration

Access to Migrant Networks: Labor Markets

Access to Migrant Networks: Likelihood of Migration

1. Impact on likelihood of migration is lower in regions with higher share of migrants and remittances

Access to Migrant Networks: Likelihood of Migration

- 1. Impact on likelihood of migration is lower in regions with higher share of migrants and remittances
- 2. Receiving remittances might help to alleviate the negative temperature shock and stay in the place of origin

Access to Migrant Networks: Likelihood of Migration

- 1. Impact on likelihood of migration is lower in regions with higher share of migrants and remittances
- 2. Receiving remittances might help to alleviate the negative temperature shock and stay in the place of origin
- 3. In addition credit-constrained households and non-land owners are more likely to migrate

Robustness tests

- 1. Definition of temperature shock:
 - Significant effects only when using the shock defined during main harvest season and robust to using different periods
 - Results are robust to alternative measures of temperature shocks
- 2. Validity identification strategy:
 - Placebo test: estimated effects we find are very unlikely to occur due to chance
- 3. Other plausible mechanisms:
 - Results are robust with and without controls for violence
 - Results are driven by rural areas Palt

1. Negative impact of extreme temperatures on agricultural production

- 1. Negative impact of extreme temperatures on agricultural production
- Agricultural producers respond by contracting labor demand for hired workers. The use of other inputs, in particular post-yield inputs, also decrease.

- 1. Negative impact of extreme temperatures on agricultural production
- Agricultural producers respond by contracting labor demand for hired workers. The use of other inputs, in particular post-yield inputs, also decrease.

- 1. Negative impact of extreme temperatures on agricultural production
- Agricultural producers respond by contracting labor demand for hired workers. The use of other inputs, in particular post-yield inputs, also decrease.
- Labor markets: transmission mechanism of negative weather shocks, but important heterogeneity by access to land and risk-coping mechanisms

4. Agricultural workers respond by migrating internationally

- Two types of migration may emerge from this relation:
 - i. Migration as a strategy to survive and compensate for income losses

- Two types of migration may emerge from this relation:
 - i. Migration as a strategy to survive and compensate for income losses

 Migration as a way out of poverty in regions with untenable conditions (changing climate)

- Two types of migration may emerge from this relation:
 - Migration as a strategy to survive and compensate for income losses
 - \Rightarrow Access to risk-coping mechanisms, technical assistance and productive public goods
 - ii. Migration as a way out of poverty in regions with untenable conditions (changing climate)

- Two types of migration may emerge from this relation:
 - i. Migration as a strategy to survive and compensate for income losses
 ⇒ Access to risk-coping mechanisms, technical assistance and
 productive public goods
 - ii. Migration as a way out of poverty in regions with untenable conditions (changing climate)
 - \Rightarrow Remove obstacles to migration that provides a pathway out of poverty

Thank you!

Ana Maria Ibañez: anaib@iadb.org
Juliana Quigua: jimena.romero@ne.su.se
Jimena Romero: julianaqu@iadb.org
Andrea Velasquez: andrea.velasquez@<u>ucdenver.edu</u>

Agricultural Seasons

Figure 3: Agricultural Seasons of Main Crops

Impact of Temperature Shocks on Migration Likelihood-Different Shocks and Periods

	C	Changing the months of the shocks				Changing the range of years		
Population Group	Winter Shock	All-year Shock	Apante Shock	Lean Shock	2009-2018	2013-2018	Excluding 2015	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
Panel A								
Agricultural Households (seasona)	0.206	0.055	-0.087	-0.029	0.203	0.243	0.238	
	(0.094)**	(0.045)	(0.140)	(0.092)	(0.093)**	(0.111)**	(0.099)**	
R2	0.011	0.010	0.010	0.010	0.011	0.012	0.011	
Crime, Weather, and Household	Х	Х	X	X	X	X	Х	
Year Fixed Effects	X	X	X	X	X	X	X	
Municipal Fixed Effects	X	X	X	X	X	X	X	
Municipal Socio*Year	X	X	X	X	X	X	X	
Geographic*Year	X	X	X	X	X	X	X	

▶ index

Coefficients on migration likelihood

Alternative Measures of the Shock

Population Group	1 SD	1.5 SD	Higher 29	Higher 35
Panel A				
Agricultural Households (seasonal)	0.112	0.203	0.102	0.130
	(0.078)	(0.093)**	(0.081)	(0.062)**
R2	0.010	0.011	0.010	0.010
Crime, Weather, and Household	Χ	Χ	Χ	Χ
Year Fixed Effects	X	Χ	Χ	Χ
Municipal Fixed Effects	X	Χ	Χ	Χ
Municipal Socio*Year	X	Χ	Χ	Χ
Geographic*Year	Χ	Χ	Χ	Χ

▶ index

Alternative Controls and Urban vs Rural

	Agri(seasonal-rural)		Agri(seaso	onal-urban)
	(1)	(2)	(3)	(4)
Temperature shock t-1	0.268	0.256	0.034	0.037
	(0.117)**	(0.116)**	(0.071)	(0.068)
Crime shock t-1		0.444		-0.114
		(0.137)**		(0.208)
Mean	0.929	0.929	0.494	0.494
Obs	17,227	17,227	4,456	4,456
R2	0.011	0.011	0.021	0.021

Rainfall and Temperature

Non-Agro LLM

	Manufacture	Construction	Services	Combined sectores
Temperature Shock	-0.001	0.000	0.003	0.002
	(0.002)	(0.001)	(0.003)	(0.003)
Obs	2,239	2,239	2,239	2,239
Mean	0.131	0.065	0.281	0.477
Year + Municipality FE	X	X	X	Х
Rainfall Shock year t-1	X	X	X	X
Drought Shock year t-1	X	X	X	X
Crime Shock year t-1	X	X	X	X
Municipal characteristics*Year	X	X	X	X

▶ back