# Marriage, Work and Migration: The Role of Infrastructure Development and Gender Norms

Amrit Amirapu<sup>1</sup>, Niaz Asadullah<sup>2</sup> & Zaki Wahhaj<sup>1</sup>

<sup>1</sup>University of Kent & <sup>2</sup>University of Malaya WIDER-UNESCAP Conference, Bangkok "Transforming Economies – for Better Jobs"

September 11-13, 2019

### Motivation

- ► Early stages of development characterised by rural-urban migration & shift from farm to non-farm employment
- ► Relatively little is known about drivers of *female long-distance* migration in a developing economy
- 2 observations:
  - prevailing gender norms may limit female mobility, independent migration and, thus, limit access to urban jobs;
  - marriage is an important means of female long-distance migration in patrilocal societies (Rosenzweig and Stark 1989)

### Motivation

- ► Early stages of development characterised by rural-urban migration & shift from farm to non-farm employment
- ► Relatively little is known about drivers of *female long-distance* migration in a developing economy
- 2 observations:
  - prevailing gender norms may limit female mobility, independent migration and, thus, limit access to urban jobs;
  - marriage is an important means of female long-distance migration in patrilocal societies (Rosenzweig and Stark 1989)
- thus marriage markets may provide and be shaped by opportunities for women in urban areas
  - a way to bypass restrictive gender norms...
- Research Qn: How does a reduction in rural-urban migration costs affect migration, marriage, work, and human capital of women?

### Motivation cont'd.

- ► To explore these issues, we use the event of the construction of a major bridge in Bangladesh as a plausibly exogenous variation in migration costs:
  - reduced travel times between the economically deprived north-western region and the industrial belt around the capital Dhaka

### Motivation cont'd.

- To explore these issues, we use the event of the construction of a major bridge in Bangladesh as a plausibly exogenous variation in migration costs:
  - reduced travel times between the economically deprived north-western region and the industrial belt around the capital Dhaka
- Hypotheses post bridge construction :
  - ► restrictive gender norms will prevent ↑ female economic migration to urban areas,

### Motivation cont'd.

- To explore these issues, we use the event of the construction of a major bridge in Bangladesh as a plausibly exogenous variation in migration costs:
  - reduced travel times between the economically deprived north-western region and the industrial belt around the capital Dhaka
- Hypotheses post bridge construction :
  - ► restrictive gender norms will prevent ↑ female economic migration to urban areas,
  - ▶ male (economic) migration ↑
  - increase the value of such men on the marriage market
  - lead to increased matches between migrating men and women better able to afford the higher price (dowry) for such men

# Roadmap

- ► Literature
- ► Background and study context
- ► Theory
- ► Empirical Strategy
- Data
- Results
- ► Conclusion

### Literature: Road and Transport Infrastructure

- Effect of construction of feeder roads
  - Asher & Novosad 2018; Adukia, Asher & Novosad 2016 (India)
    - ▶ 10% reduction in households/workers in agriculture, effect concentrated among males
    - positive effects on school enrollment
  - Khandker, Bakht, Koolwal 2009; Khandker & Koolwal 2011 (Bangladesh)
    - wage growth, in agriculture or non-agriculture, depending on the area, poverty reduction (3-6%)
    - ► ↑ school enrollment for boys and girls at secondary level
    - ► affects attenuated over time
- Effects of major transport infrastructure (rail and road networks, bridges)
  - Donaldson & Hornbeck 2016 (USA); Donaldson 2018 (India); Banerjee, Duflo & Qian 2012 (China);
  - ▶ Morten & Oliveira 2014 (Brazil); Bird & Straub 2014 (Brazil).
  - Brooks & Donavan 2017 (Nicaragua); Blankespoor et al 2018 (Bangladesh)



# Literature: Marriage, Migration and Female Employment

- Bryan, Chowdhury and Mobarak (2014, Econometrica)
  - how do poor households in north-western Bangladesh respond to financial incentives for seasonal migration
- ► Heath and Mobarak (2015, JDE)
  - how the growth of female manufacturing jobs around Dhaka affected marriage, education & employment of women in nearby villages
- Rosenzweig and Stark (1989, JPE)
  - female marriage-migration decisions in India formed part of a risk-sharing strategy between bride-sending and bride-receiving households
- Our focus is on permanent, long-distance, rural-urban female migration, in a dynamic economy with expanding opportunities for female employment in manufacturing, and growing integration between the capital and an impoverished region.

# Literature: Social and Economic Impact of Jamuna Bridge

- Mahmud and Sawada (2014)
  - DID using districts adjacent to bridge
  - decrease in household unemployment and shift from farm to non-farm employment
- ► Blankespoor, Emran, Shilpi and Xu (2018)
  - treat Jamuna Bridge as a reduction in trade costs
  - use south-western Bangladesh as a control group
  - effect of Jamuna Bridge on economic activities in north-western Bangladsh (population density, intersectoral labour allocation, agricultural productivity)
    - document shifts from agriculture to services, eventual deindustrialization (C-P), positive effects on night lights, agri yields, etc

# Study Context: Female Work Participation in Bangladesh

- ➤ Sharp declines in fertility since the 1970s (BDHS: decline in TFR from 7.3 in 1975 to 2.3 in 2011);
- Rise in female schooling since the 1990s (WiLCAS: average of 3.5 yrs of schooling for cohort born in 1975 and over 6 yrs for cohort born in 1994);
- By contrast, low female paid work participation (WiLCAS: 10% in 2014 for women born between 1975 and 1994);
- A quarter of the gender gap in paid work participation can be explained by female seclusion norms (Asadullah and Wahhaj, 2016).

# Study Context: Female Mobility, Short Distance

Table: Female Mobility: Autonomy to go outside of the home

| Purpose of     | Visit Friends or | Hat Bazaar  | Hospital or | Training for |
|----------------|------------------|-------------|-------------|--------------|
| Travel:        | Family outside   | (Market)    | Doctor      | NGO          |
|                | the Community    |             |             | Programmes   |
| Need to ask    | 66.2             | 76.3        | 67.7        | 88.5         |
| permission (%) |                  |             |             |              |
| In case of     | f objection:     |             |             |              |
| Companion      | 75.8             | 71.5        | 71.4        | 63.1         |
| Required (%)   |                  |             |             |              |
| Purdah         | 21.2             | 22.8        | 24.3        | 28.0         |
| Required (%)   |                  |             |             |              |
|                | Source           | 2014 WILCAS |             |              |

Source: 2014 WiLCAS

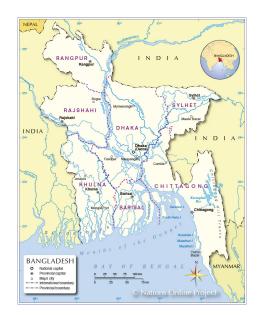
Female mobility outside of the home is limited, and conditional upon the presence of a chaperon or use of purdah.

# Study Context: Female Mobility, Long Distance

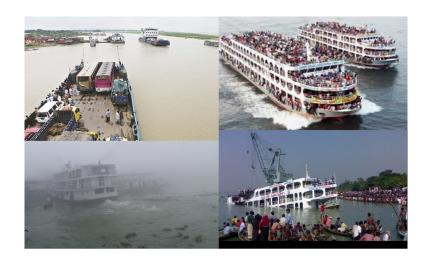
Table: Migration among Women Aged 20-39 years

| iviarried     | Women                                               | <u>Unmarrie</u>                                                                                                                                              | <u>d Women</u>                                                                                                                                                                                                                                                                                                  |
|---------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Economic      | Family-related                                      | Economic                                                                                                                                                     | Family-related                                                                                                                                                                                                                                                                                                  |
| Migration (%) | Migration (%)                                       | Migration (%)                                                                                                                                                | Migration (%)                                                                                                                                                                                                                                                                                                   |
| 88.58         | 16.98                                               | 74.40                                                                                                                                                        | 88.80                                                                                                                                                                                                                                                                                                           |
| 9.75          | 78.30                                               | 23.47                                                                                                                                                        | 9.87                                                                                                                                                                                                                                                                                                            |
| 1.46          | 3.93                                                | 2.13                                                                                                                                                         | 1.33                                                                                                                                                                                                                                                                                                            |
| 0.19          | 0.65                                                | 0                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                               |
| 0.02          | 0.15                                                | 0                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                               |
| 5,885         | 5,885                                               | 375                                                                                                                                                          | 375                                                                                                                                                                                                                                                                                                             |
|               | Migration (%)  88.58  9.75  1.46  0.19  0.02  5,885 | Migration (%)       Migration (%)         88.58       16.98         9.75       78.30         1.46       3.93         0.19       0.65         0.02       0.15 | Migration (%)         Migration (%)         Migration (%)           88.58         16.98         74.40           9.75         78.30         23.47           1.46         3.93         2.13           0.19         0.65         0           0.02         0.15         0           5,885         5,885         375 |

Source: 2014 WiLCAS


Note: A 'migration episode' means moving, at least, out of the village/ward for a period of 6 months or more.

The majority of women experience exactly one migration episode in their lives, typically at the time of marriage.


# Study Context: Jamuna Bridge

- Largest ever infrastructure development project in Bangladesh
- Provides road and rail-links between north-western and eastern parts of the country
- Site selected primarily for engineering rather than economic reasons (Mahmud and Sawada 2014)
- Construction began in October 1994, and completed in 1998
- Reduced journey time between Dhaka and north-western Bangladesh
  - e.g. travel time to/from Bogra reduced from 12-36 hours (traffic jams at ferry terminals) to 4 hours (Ahmed et al, 2003)
  - expect this to lead to an increase in permanent migration...

# Jamuna Bridge Location



# Ferry Crossings over the Jamuna River



# Ferry Crossings over the Jamuna River



# Theoretical Model (summary)

- ▶ Two-sector model of migration (Harris-Todaro, 1970) with
  - male and female workers and a marriage market
  - partial sharing of joint-income within marriage
  - restrictive gender norms: women cannot migrate to the city on their own or participate in rural labour market
- ► As the cost of migration ↓
  - more men wish to migrate
  - women wish to match with these men (husband's income and their income ↑)
  - only rich women can pay for the privilege of matching with the male migrants
    - dowry plays a market clearing role

# Theoretical Model (summary)

- Two-sector model of migration (Harris-Todaro, 1970) with
  - male and female workers and a marriage market
  - partial sharing of joint-income within marriage
  - restrictive gender norms: women cannot migrate to the city on their own or participate in rural labour market
- ► As the cost of migration ↓
  - more men wish to migrate
  - women wish to match with these men (husband's income and their income ↑)
  - only rich women can pay for the privilege of matching with the male migrants
    - dowry plays a market clearing role
- Predictions from the model:
  - Increased marriage-related migration to urban areas for women from better-off families
  - Increased urban labour force participation for rich women
  - no changes for women from poor families





# Identification Strategy

#### Difference-in-Differences

- We exploit the location of the bridge and the timing of bridge construction
- Difference-in-Differences:
  - compare outcomes for women
    - between areas affected by the bridge (i.e. Rajshahi and Rangpur, divisions that the bridge connects to Dhaka) vs areas unaffected by the bridge, and
    - between cohorts who came of age before vs after bridge construction
- ► Main identification assumption:
  - outcomes in areas affected by the Jamuna Bridge were on a common trend with those that weren't
  - ➤ so that any deviations from the trend (post 1998) are due to the bridge

### **Econometric Specification**

#### Linear Probability Model:

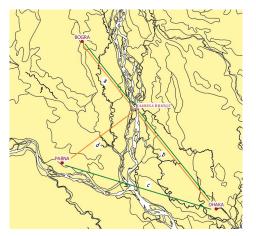
$$y_{irc} = \mathbf{X}_{irc}\beta + \gamma Post_c + \delta JM_r + \theta (Post_c \times JM_r) + d_r + \varepsilon_{irc} \quad (1)$$

#### where

- $ightharpoonup JM_r$ : individual born in an area r exposed to the bridge treatment
- $ightharpoonup Post_c$ : individual belongs to a cohort c exposed to the treatment
- $ightharpoonup d_r$ : region fixed-effects
- X<sub>irc</sub>: individual characteristics, including
  - age, age squared, religion
  - geographic distance from place of birth to manufacturing belt
  - whether reaching capital from place of birth involves river-crossing
  - parental characteristics (edu, landholdings, occupation type)
- standard errors clustered at the sub-district level

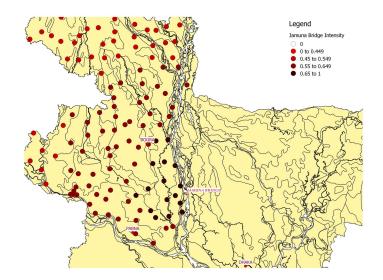

### **Econometric Specification**

#### Linear Probability Model:


$$y_{irc} = \mathbf{X}_{irc}\beta + \gamma Post_c + \delta JM_r + \theta (Post_c \times JM_r) + d_r + \varepsilon_{irc} \quad (1)$$

#### where

- $ightharpoonup JM_r$ : individual born in an area r exposed to the bridge treatment
- $ightharpoonup Post_c$ : individual belongs to a cohort c exposed to the treatment
- $ightharpoonup d_r$ : region fixed-effects
- X<sub>irc</sub>: individual characteristics, including
  - age, age squared, religion
  - geographic distance from place of birth to manufacturing belt
  - whether reaching capital from place of birth involves river-crossing
  - parental characteristics (edu, landholdings, occupation type)
- standard errors clustered at the sub-district level
- Results are robust to
  - ightharpoonup replacing  $JM_r$  with continuous measure of treatment intensity
  - clustering at the district level
  - region-specific linear time-trends
    - using a Logit model instead of LPM




# Measure of Intensity of Treatment



| Town  | Treatment Intensity |                                                 |  |  |  |
|-------|---------------------|-------------------------------------------------|--|--|--|
| Bogra | max <               | $\left\{0, 1 - rac{a + b}{a + b + 300} ight\}$ |  |  |  |
| Pabna | max <               | $\left\{0,1-\frac{d+b}{c+300}\right\}$          |  |  |  |

# Measure of Intensity of Treatment



# Data: Women's Life Choices and Attitudes Survey

- Bangladesh Women's Life Choices and Attitudes Survey (WiLCAS) 2014 – purposely designed survey funded by Australian Aid
  - includes a nationally representative sample of 6,293 women born between 1975 and 1994
  - information on place of birth, parental background and major life decisions including schooling, economic participation, etc.
  - ► full migration history, including geocoded data on where they were located at any point in time since birth to 2014
  - marriage history, including timing and terms of marriage, and characteristics of husband at time of marriage.

Characteristics of Female Economic Migrants

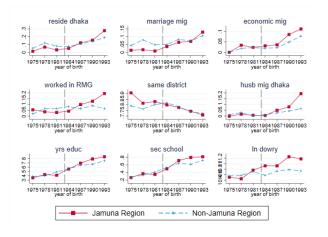
# WiLCAS Data: Summary Statistics (1)

|                     | count | mean   | sd    | min | p50 | max |
|---------------------|-------|--------|-------|-----|-----|-----|
| age                 | 6237  | 29.003 | 5.575 | 20  | 29  | 39  |
| education           | 6237  | 5.267  | 3.794 | 0   | 5   | 12  |
| muslim              | 6237  | 0.884  | 0.320 | 0   | 1   | 1   |
| father educ         | 6237  | 2.953  | 3.873 | 0   | 0   | 12  |
| mother educ         | 6237  | 1.629  | 2.787 | 0   | 0   | 12  |
| father land (acres) | 6237  | 1.389  | 2.752 | 0   | 1   | 60  |
| father landless     | 6237  | 0.053  | 0.225 | 0   | 0   | 1   |
| father low pay      | 6237  | 0.215  | 0.411 | 0   | 0   | 1   |
| RMG work            | 6237  | 0.053  | 0.223 | 0   | 0   | 1   |
| river cross         | 6237  | 0.795  | 0.404 | 0   | 1   | 1   |
| cross Jamuna        | 6237  | 0.256  | 0.436 | 0   | 0   | 1   |
| reside Dhaka        | 6237  | 0.141  | 0.348 | 0   | 0   | 1   |
| marriage mig        | 6237  | 0.069  | 0.253 | 0   | 0   | 1   |
| economic mig        | 6237  | 0.053  | 0.224 | 0   | 0   | 1   |

# WiLCAS Data: Summary Statistics (2)

Marriage-related variables

|                     | count | mean   | sd    | min | p50 | max |
|---------------------|-------|--------|-------|-----|-----|-----|
| same upazila        | 6237  | 0.544  | 0.498 | 0   | 1   | 1   |
| same district       | 6237  | 0.728  | 0.445 | 0   | 1   | 1   |
| husband educ        | 5866  | 4.672  | 4.178 | 0   | 5   | 12  |
| husband age         | 5726  | 36.751 | 7.159 | 19  | 36  | 66  |
| husband from Dhaka  | 5862  | 0.059  | 0.236 | 0   | 0   | 1   |
| husband migr Dhaka  | 5862  | 0.040  | 0.197 | 0   | 0   | 1   |
| ever married        | 6237  | 0.940  | 0.238 | 0   | 1   | 1   |
| married by 15       | 6237  | 0.378  | 0.485 | 0   | 0   | 1   |
| arranged marriage   | 6237  | 0.797  | 0.402 | 0   | 1   | 1   |
| consang marriage    | 6237  | 0.078  | 0.268 | 0   | 0   | 1   |
| own choice marriage | 6237  | 0.068  | 0.251 | 0   | 0   | 1   |
| forced marriage     | 6237  | 0.019  | 0.137 | 0   | 0   | 1   |
| dowry               | 6237  | 0.363  | 0.481 | 0   | 0   | 1   |


#### Results

- Recall that our theoretical framework predicts different outcomes for "well-off" versus "poor" women.
- Therefore, in the empirical analysis, we separately estimate the effects of the bridge on these two groups.
- Specifically, we split the sample according to whether the female respondent's parents had
  - 1.  $< \frac{1}{2}$  acre of cultivable land (46% of sample)
  - 2.  $\geq 1/2$  acre of cultivable land
- ▶ We use an age threshold of 16 years in 1998 to define exposed cohorts. (Female median age of marriage: 16.1 years in BDHS 1999).

### LPM Results - Graphical Analysis

1) Only including those whose fathers have more than half an acre

Figure: Trends in Outcomes in Rajshahi/Rangpur vs Rest of Bangladesh



# LPM Results: Migration

1) Only including those whose fathers have more than half an acre

Table: Migration Outcomes

|                    | (1)          | (2)          | (3)          | (4)          | (5)          | (6)          | (7)        | (8)       |
|--------------------|--------------|--------------|--------------|--------------|--------------|--------------|------------|-----------|
|                    | reside dhaka | reside dhaka | marriage mig | marriage mig | economic mig | economic mig | migr dhaka | migrdhaka |
| JM bridge X post   | 0.055**      |              | 0.036**      |              | 0.014        |              | 0.05 0**   |           |
|                    | (0.021)      |              | (0.015)      |              | (0.015)      |              | (0.021)    |           |
| JM bridge          |              | 0.107***     |              | 0.073***     |              | 0.026        |            | 0.098***  |
| (intensity) X post |              | (0.037)      |              | (0.026)      |              | (0.026)      |            | (0.037)   |
| JM bridge          |              | -0.321       |              | -0.665***    |              | 0.289        |            | -0.300    |
| (intensity)        |              | (0.341)      |              | (0.233)      |              | (0.178)      |            | (0.277)   |
| born post 1982     | - 0.046**    | -0.048**     | -0.013       | -0.014       | -0.026**     | -0.026**     | -0.035**   | -0.037**  |
|                    | (0.019)      | (0.019)      | (0.013)      | (0.013)      | (0.011)      | (0.011)      | (0.016)    | (0.016)   |
| dist to RMG (10km) | - 0. 01 2*** | -0.013***    | - 0.008***   | -0.010***    | -0.002*      | -0.001       | -0.009***  | -0.010*** |
|                    | (0.002)      | (0.003)      | (0.002)      | (0.002)      | (0.001)      | (0.001)      | (0.002)    | (0.002)   |
| river cross        | - 0. 226***  | -0.226***    | -0.138***    | -0.138***    | -0.032*      | -0.032*      | -0.158***  | -0.158*** |
|                    | (0.044)      | (0.044)      | (0.031)      | (0.031)      | (0.018)      | (0.018)      | (0.037)    | (0.037)   |
| age                | - 0.041***   | -0.041***    | -0.014*      | -0.014*      | - 0.016**    | -0.016**     | -0.030***  | -0.030*** |
| -                  | (0.011)      | (0.011)      | (0.008)      | (0.008)      | (0.006)      | (0.006)      | (0.010)    | (0.010)   |
| age sq             | 0.001***     | 0.001***     | 0.000        | 0.000        | 0.000*       | 0.000*       | 0.000**    | 0.000**   |
|                    | (0.000)      | (0.000)      | (0.000)      | (0.000)      | (0.000)      | (0.000)      | (0.000)    | (0.000)   |
| Constant           | 1.224***     | 1.232***     | 0.499***     | 0.515***     | 0.477***     | 0.470***     | 0.935***   | 0.943***  |
|                    | (0.166)      | (0.166)      | (0.121)      | (0.122)      | (0.106)      | (0.107)      | (0.152)    | (0.153)   |
| Observations       | 3355         | 3355         | 3355         | 3355         | 3355         | 3355         | 3355       | 3355      |

<sup>\*</sup> p < 0.10, \*\* p < 0.05, \*\*\* p < 0.01

Robust standard errors clustered by subdistrict in parentheses

### LPM Results: Work

1) Only including those whose fathers have more than half an acre

Table: Work Outcomes

|                    | (1)           | (2)           |
|--------------------|---------------|---------------|
|                    | worked in RMG | worked in RMG |
| JM bridge X post   | 0.047**       |               |
|                    | (0.023)       |               |
| JM bridge          |               | 0.080*        |
| (intensity) X post |               | (0.041)       |
| JM bridge          |               | 0.139         |
| (intensity)        |               | (0.295)       |
| (Intensity)        |               | (0.233)       |
| born post 1982     | - 0.005       | -0.005        |
|                    | (0.021)       | (0.021)       |
| U.A.A. DIMO (101)  | -0.000        | 0.001         |
| dist to RMG (10km) |               |               |
|                    | (0.002)       | (0.002)       |
| river cross        | -0.057**      | - 0.05 7**    |
|                    | (0.026)       | (0.026)       |
| age                | -0.001        | -0.001        |
| «Re                | (0.012)       | (0.012)       |
|                    | ()            | ()            |
| age sq             | -0.000        | -0.000        |
|                    | (0.000)       | (0.000)       |
| Constant           | 0.285         | 0.278         |
| Constant           | (0.180)       | (0.180)       |
| Observations       | 2119          | 2119          |
|                    |               |               |

<sup>\* 0 &</sup>lt; 0 10 \*\* 0 < 0.05 \*\*\* 0 < 0.01

Robust standard errors clustered by subdistrict in parenthese:

# LPM Results: Marriage

1) Only including those whose fathers have more than half an acre

Table: Marriage Outcomes

|                    | (1)           | (2)           | (3)        | (4)           | (5)            | (6)            |
|--------------------|---------------|---------------|------------|---------------|----------------|----------------|
|                    | same district | same district | husb dhaka | hus b d ha ka | husb mig dhaka | husb mig dhaka |
| JM bridge X post   | -0.062*       |               | -0.003     |               | 0.038***       |                |
|                    | (0.033)       |               | (0.012)    |               | (0.014)        |                |
| JM bridge          |               | -0.095        |            | 0.001         |                | 0.067***       |
| (intensity) X post |               | (0.059)       |            | (0.022)       |                | (0.024)        |
| JM bridge          |               | -0.460        |            | -0.989***     |                | 0.052          |
| (intensity)        |               | (0.474)       |            | (0.254)       |                | (0.161)        |
| born post 1982     | 0.039         | 0.037         | -0.021     | -0.022        | - 0.019*       | -0.019*        |
|                    | (0.028)       | (0.028)       | (0.015)    | (0.015)       | (0.010)        | (0.010)        |
| dist to RMG (10km) | -0.001        | -0.003        | -0.010***  | - 0.013***    | -0.001         | - 0.001        |
|                    | (0.002)       | (0.003)       | (0.002)    | (0.003)       | (0.001)        | (0.001)        |
| river cross        | 0.023         | 0.023         | - 0.192*** | -0.193***     | -0.029***      | - 0.029***     |
|                    | (0.038)       | (0.038)       | (0.042)    | (0.041)       | (0.011)        | (0.011)        |
| age                | 0.034**       | 0.034**       | 0.008      | 0.008         | -0.032***      | - 0.032***     |
| ·                  | (0.016)       | (0.016)       | (0.007)    | (0.007)       | (0.008)        | (0.008)        |
| age sq             | - 0.000*      | -0.000*       | -0.000     | -0.000        | 0.000***       | 0.000***       |
|                    | (0.000)       | (0.000)       | (0.000)    | (0.000)       | (0.000)        | (0.000)        |
| Constant           | 0.140         | 0.153         | 0.198*     | 0.222**       | 0.651***       | 0.649***       |
|                    | (0.245)       | (0.246)       | (0.111)    | (0.112)       | (0.130)        | (0.130)        |
| Observations       | 3181          | 3181          | 31 81      | 3181          | 3181           | 3181           |

<sup>\*</sup> p < 0.10, \*\* p < 0.05, \*\*\* p < 0.01

Robust standard errors clustered by subdistrict in parentheses

# LPM Results: Dowry

#### 1) Only including those whose fathers have more than half an acre

Table: Dowry Outcomes

|                    | (1)      | (2)      | (3)           | (4)           |
|--------------------|----------|----------|---------------|---------------|
|                    | dowry    | dowry    | In real dowry | In real dowry |
| JM bridge X post   | -0.037   |          | 0.279**       |               |
|                    | (0.039)  |          | (0.115)       |               |
|                    |          |          |               |               |
| JM bridge          |          | -0.078   |               | 0.498**       |
| (intensity) X post |          | (0.069)  |               | (0.192)       |
| 18.4 1 21          |          | 0.700**  |               | 0.055+        |
| JM bridge          |          | 0.788**  |               | - 2. 365 *    |
| (intensity)        |          | (0.400)  |               | (1.322)       |
| born post 1982     | 0.004    | 0.005    | -0.231*       | - 0. 235 °    |
| DOTH POST 1902     | (0.033)  | (0.033)  | (0.122)       | (0.122)       |
|                    | (0.055)  | (0.055)  | (0.122)       | (0.122)       |
| dist to RMG (10km) | -0.006** | -0.003   | 0.004         | -0.007        |
| , ,                | (0.002)  | (0.003)  | (0.008)       | (0.012)       |
|                    | ()       | ()       | ()            | ()            |
| river cross        | -0.006   | -0.006   | -0.013        | -0.016        |
|                    | (0.045)  | (0.045)  | (0.141)       | (0.138)       |
|                    |          |          |               |               |
| age                | 0.040**  | 0.040**  | 0.039         | 0.040         |
|                    | (0.016)  | (0.017)  | (0.061)       | (0.061)       |
|                    |          |          |               |               |
| age sq             | -0.001** | -0.001** | -0.001        | -0.001        |
|                    | (0.000)  | (0.000)  | (0.001)       | (0.001)       |
| Constant           | -0.069   | -0.088   | 10.063***     | 10.146***     |
| Constant           |          |          |               |               |
|                    | (0.241)  | (0.242)  | (0.919)       | (0.920)       |
| Observations       | 3181     | 3181     | 1 21 2        | 1212          |

<sup>\*</sup> p < 0.10, \*\* p < 0.05, \*\*\* p < 0.01

Including only respondents with positive dowry amounts

Robust standard errors clustered by subdistrict in parentheses

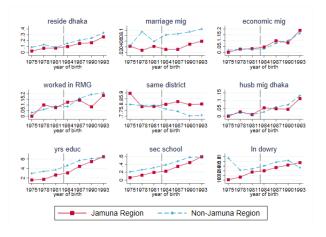
### LPM Results: Education

#### 1) Only including those whose fathers have more than half an acre

Table: Education Outcomes

|                                          | (1)                            | (2)                   | (3)                  | (4)                   | (5)                 | (6)                  | (7)                 | (8)                 |
|------------------------------------------|--------------------------------|-----------------------|----------------------|-----------------------|---------------------|----------------------|---------------------|---------------------|
| JM bridge X post                         | yrs educ<br>0.770**<br>(0.309) | yrs educ              | yrs educ             | yrs ed uc             | 0.064*<br>(0.038)   | sec_school           | sec_sc hool         | sec_school          |
| JM bridge<br>(intensity) X post          |                                | 1.306**<br>(0.544)    |                      |                       |                     | 0.111*<br>(0.066)    |                     |                     |
| JM bridge X post<br>(10 yrs)             |                                |                       | 1.050***<br>(0.271)  |                       |                     |                      | 0.140*** (0.036)    |                     |
| JM bridge<br>(intensity) X post (10 yrs) |                                |                       |                      | 1.856***<br>(0.472)   |                     |                      |                     | 0.246***<br>(0.061) |
| JM bridge<br>(intensity)                 |                                | ·12.233***<br>(2.886) |                      | ·11.843***<br>(2.998) |                     | ·1.388***<br>(0.396) |                     | 1.396***<br>(0.415) |
| born post 1982                           | 0.034<br>(0.266)               | 0.044<br>(0.265)      |                      |                       | 0.050<br>(0.036)    | 0.051<br>(0.036)     |                     |                     |
| born post 1987                           |                                |                       | -0.587**<br>(0.252)  | -0.599**<br>(0.252)   |                     |                      | -0.074**<br>(0.037) | -0.076**<br>(0.037) |
| dist to RMG (10km)                       | -0.009<br>(0.018)              | -0.048**<br>(0.019)   | -0.010<br>(0.018)    | -0.048**<br>(0.020)   | 0.000<br>(0.002)    | -0.004<br>(0.003)    | 0.000<br>(0.002)    | -0.004<br>(0.003)   |
| river cross                              | 0.693***<br>(0.212)            | 0.689***<br>(0.210)   | 0.685***<br>(0.214)  | 0.681***<br>(0.213)   | 0.089**<br>(0.036)  | 0.089**<br>(0.036)   | 0.089**<br>(0.036)  | 0.088**<br>(0.036)  |
| age                                      | -0.272**<br>(0.112)            | -0.270**<br>(0.112)   | -0.358***<br>(0.132) | -0.358***<br>(0.131)  | -0.019<br>(0.015)   | -0.019<br>(0.015)    | -0.025<br>(0.019)   | -0.025<br>(0.019)   |
| age sq                                   | 0.001<br>(0.002)               | 0.001<br>(0.002)      | 0.002<br>(0.002)     | 0.002<br>(0.002)      | -0.000<br>(0.000)   | -0.000<br>(0.000)    | -0.000<br>(000.0)   | -0.000<br>(0.000)   |
| Constant                                 | 10.392***<br>(1.606)           | 10.666***<br>(1.599)  | 12.433***<br>(2.125) | 12.754***<br>(2.112)  | 0.850***<br>(0.218) | 0.882***<br>(0.218)  | 1.093*** (0.315)    | 1.131***<br>(0.314) |
| Observations                             | 3355                           | 3355                  | 3355                 | 3355                  | 3355                | 3355                 | 3355                | 3355                |

<sup>\*</sup> p < 0.10, \*\* p < 0.05, \*\*\* p < 0.01


Robust standard errors clustered by subdistrict in parentheses



# LPM Results - Graphical Analysis

2) Only including those whose fathers have less than half an acre

Figure: Trends in Outcomes in Rajshahi/Rangpur vs Rest of Bangladesh



# LPM Results: Migration

2) Only including those whose fathers have less than half an acre

Table: Migration Outcomes

|                    | (1)          | (2)          | (3)          | (4)          | (5)          | (6)          | (7)        | (8)        |
|--------------------|--------------|--------------|--------------|--------------|--------------|--------------|------------|------------|
|                    | reside dhaka | reside dhaka | marriage mig | marriage mig | economic mig | economic mig | migr dhaka | migr dhaka |
| JM bridge X post   | - 0. 01 4    |              | -0.014       |              | 0.017        |              | 0.007      |            |
|                    | (0.027)      |              | (0.020)      |              | (0.019)      |              | (0.025)    |            |
| JM bridge          |              | -0.003       |              | - 0.009      |              | 0.031        |            | 0.029      |
| (intensity) X post |              | (0.045)      |              | (0.033)      |              | (0.032)      |            | (0.042)    |
| JM bridge          |              | -0.642*      |              | -0.495***    |              | 0.253        |            | -0.322     |
| (intensity)        |              | (0.372)      |              | (0.186)      |              | (0.218)      |            | (0.290)    |
| born post 1982     | 0.025        | 0.021        | -0.004       | - 0.007      | -0.017       | -0.017       | -0.023     | -0.026     |
|                    | (0.022)      | (0.022)      | (0.020)      | (0.020)      | (0.014)      | (0.014)      | (0.022)    | (0.022)    |
| dist to RMG (10km) | - 0. 01 0*** | -0.012***    | - 0. 005 *** | -0.007***    | 0.000        | 0.001        | -0.006***  | -0.006***  |
|                    | (0.002)      | (0.003)      | (0.001)      | (0.002)      | (0.001)      | (0.001)      | (0.002)    | (0.002)    |
| river cross        | - 0. 238***  | -0.237***    | - 0.124***   | -0.123***    | -0.022       | -0.022       | -0.132***  | -0.132***  |
|                    | (0.056)      | (0.055)      | (0.040)      | (0.040)      | (0.033)      | (0.033)      | (0.047)    | (0.047)    |
| age                | - 0.064***   | - 0.065***   | -0.002       | -0.003       | -0.043***    | -0.043***    | -0.050***  | - 0.051*** |
| -                  | (0.013)      | (0.013)      | (0.009)      | (0.009)      | (0.010)      | (0.010)      | (0.012)    | (0.012)    |
| age sq             | 0.001***     | 0.001***     | 0.000        | 0.000        | 0.001***     | 0.001***     | 0.001***   | 0.001***   |
|                    | (0.000)      | (0.000)      | (0.000)      | (0.000)      | (0.000)      | (0.000)      | (0.000)    | (0.000)    |
| Constant           | 1.555***     | 1.578***     | 0.319**      | 0.337**      | 0.879***     | 0.870***     | 1.250***   | 1.262***   |
|                    | (0.188)      | (0.188)      | (0.130)      | (0.130)      | (0.149)      | (0.149)      | (0.175)    | (0.176)    |
| Observations       | 2903         | 2903         | 2903         | 2903         | 2903         | 2903         | 2903       | 2903       |

<sup>\*</sup> p < 0.10, \*\* p < 0.05, \*\*\* p < 0.01

Robust standard errors clustered by subdistrict in parentheses

### LPM Results: Work

2) Only including those whose fathers have less than half an acre

Table: Work Outcomes

|                    | (1)           | (2)           |
|--------------------|---------------|---------------|
|                    | worked in RMG | worked in RMG |
| JM bridge X post   | -0.023        |               |
|                    | (0.036)       |               |
|                    |               |               |
| JM bridge          |               | -0.041        |
| (intensity) X post |               | (0.061)       |
| JM bridge          |               | 0.449         |
| (intensity)        |               | (0.364)       |
| (meensky)          |               | (0.501)       |
| born post 1982     | -0.001        | -0.001        |
|                    | (0.030)       | (0.030)       |
|                    |               | . ,           |
| dist to RMG (10km) | -0.000        | 0.001         |
|                    | (0.002)       | (0.002)       |
|                    |               |               |
| river cross        | 0.011         | 0.010         |
|                    | (0.049)       | (0.049)       |
| age                | -0.022        | -0.022        |
| age                | (0.016)       | (0.016)       |
|                    | (0.010)       | (0.010)       |
| age sq             | 0.000         | 0.000         |
| • .                | (0.000)       | (0.000)       |
|                    |               | . ,           |
| Constant           | 0.661***      | 0.647***      |
|                    | (0.244)       | (0.246)       |
| Observations       | 1 645         | 1645          |

<sup>\* 0 &</sup>lt; 0 10 \*\* 0 < 0 05 \*\*\* 0 < 0 01

Robust standard errors clustered by subdistrict in parentheses

### LPM Results: Marriage

2) Only including those whose fathers have less than half an acre

Table: Marriage Outcomes

|                    | (1)           | (2)           | (3)        | (4)        | (5)            | (6)            |
|--------------------|---------------|---------------|------------|------------|----------------|----------------|
|                    | same district | same district | husb dhaka | hus bdhaka | husb mig dhaka | husb mig dhaki |
| JM bridge X post   | 0.063         |               | -0.018     |            | -0.003         |                |
|                    | (0.039)       |               | (0.013)    |            | (0.015)        |                |
| JM bridge          |               | 0.118*        |            | -0.014     |                | - 0.006        |
| (intensity) X post |               | (0.067)       |            | (0.021)    |                | (0.026)        |
| JM bridge          |               | 0.056         |            | -1.027***  |                | 0.250          |
| (intensity)        |               | (0.439)       |            | (0.252)    |                | (0.186)        |
| born post 1982     | -0.002        | -0.003        | 0.018      | 0.015      | 0.008          | 0.009          |
|                    | (0.033)       | (0.033)       | (0.018)    | (0.018)    | (0.012)        | (0.012)        |
| dist to RMG (10km) | 0.005**       | 0.006*        | -0.010***  | - 0.013*** | -0.000         | 0.000          |
|                    | (0.002)       | (0.003)       | (0.002)    | (0.003)    | (0.001)        | (0.001)        |
| river cross        | 0.016         | 0.016         | -0.276***  | -0.274***  | -0.002         | - 0.002        |
|                    | (0.058)       | (0.058)       | (0.044)    | (0.044)    | (0.029)        | (0.029)        |
| age                | 0.000         | 0.000         | 0.018**    | 0.018**    | -0.039***      | - 0.039***     |
| •                  | (0.016)       | (0.016)       | (0.008)    | (0.008)    | (0.010)        | (0.010)        |
| age sq             | 0.000         | 0.000         | -0.000**   | -0.000**   | 0.001***       | 0.001***       |
|                    | (0.000)       | (0.000)       | (0.000)    | (0.000)    | (0.000)        | (0.000)        |
| Constant           | 0.557**       | 0.554**       | 0.060      | 0.091      | 0.726***       | 0.719***       |
|                    | (0.229)       | (0.231)       | (0.111)    | (0.111)    | (0.158)        | (0.158)        |
| Observations       | 2702          | 2702          | 2702       | 2702       | 2702           | 2702           |

<sup>\*</sup> p < 0.10, \*\* p < 0.05, \*\*\* p < 0.01

Robust standard errors clustered by subdistrict in parentheses

# LPM Results: Dowry

2) Only including those whose fathers have less than half an acre

Table: Dowry Outcomes

|                      | (1)       | (2)       | (3)           | (4)           |
|----------------------|-----------|-----------|---------------|---------------|
|                      | dowry     | dowry     | In real dowry | In real dowry |
| JM bridge X post     | 0.146***  |           | 0.195         |               |
|                      | (0.049)   |           | (0.121)       |               |
| 188 1 21             |           | 0.000000  |               | 0.014         |
| JM bridge            |           | 0.220***  |               | 0.311         |
| (intensity) X post   |           | (0.083)   |               | (0.211)       |
| JM bridge            |           | 1.249**   |               | -3.013**      |
| (intensity)          |           | (0.507)   |               | (1.191)       |
|                      |           |           |               |               |
| born post 1982       | -0.071*   | - 0.064   | 0.096         | 0.090         |
|                      | (0.039)   | (0.039)   | (0.133)       | (0.132)       |
| dist to RMG (10km)   | 0.001     | 0.005+    | - 0.008       | -0.019**      |
| dist to King (Tokin) |           |           |               |               |
|                      | (0.003)   | (0.003)   | (0.007)       | (0.009)       |
| river cross          | -0.088*   | -0.090*   | - 0.15 6      | - 0.154       |
|                      | (0.051)   | (0.051)   | (0.145)       | (0.142)       |
|                      |           |           |               |               |
| age                  | 0.065***  | 0.066***  | - 0. 035      | - 0.037       |
|                      | (0.018)   | (0.018)   | (0.064)       | (0.064)       |
| age sq               | -0.001*** | -0.001*** | 0.000         | 0.000         |
| aBc 24               | (0.000)   | (0.000)   | (0.001)       | (0.001)       |
|                      | (0.000)   | (0.000)   | (5.501)       | (0.001)       |
| Constant             | -0.339    | - 0.381   | 11.211***     | 11.343***     |
|                      | (0.251)   | (0.252)   | (0.806)       | (0.816)       |
| Observations         | 2702      | 2702      | 1044          | 1044          |

<sup>\*</sup> p < 0.10, \*\* p < 0.05, \*\*\* p < 0.01

Including only respondents with positive dowry amounts

Robust standard errors clustered by subdistrict in parentheses

### LPM Results: Education

2) Only including those whose fathers have less than half an acre

Table: Education Outcomes

|                                          | (1)                  | (2)                   | (3)                  | (4)                   | (5)                 | (6)                  | (7)                 | (8)                  |
|------------------------------------------|----------------------|-----------------------|----------------------|-----------------------|---------------------|----------------------|---------------------|----------------------|
|                                          | yrs educ             | yrs educ              | yrs educ             | yrs ed uc             | sec_schoo           | sec_school           | sec_school          | sec_schoo            |
| JM bridge X post                         | 0.398<br>(0.289)     |                       |                      |                       | 0.009<br>(0.035)    |                      |                     |                      |
| JM bridge<br>(intensity) X post          |                      | 0.885*<br>(0.513)     |                      |                       |                     | 0.041<br>(0.062)     |                     |                      |
| JM bridge X post<br>(10 yrs)             |                      |                       | 0.985***<br>(0.280)  |                       |                     |                      | 0.053<br>(0.038)    |                      |
| JM bridge<br>(intensity) X post (10 yrs) |                      |                       |                      | 1.795***<br>(0.494)   |                     |                      |                     | 0.103<br>(0.067)     |
| JM bridge<br>(intensity)                 |                      | -12.218***<br>(3.004) |                      | -12 502***<br>(2.937) |                     | ·1.640***<br>(0.397) |                     | -1.656***<br>(0.387) |
| born post 1982                           | 0.190<br>(0.277)     | 0.152<br>(0.277)      |                      |                       | -0.015<br>(0.037)   | -0.020<br>(0.037)    |                     |                      |
| born post 1987                           |                      |                       | -0.223<br>(0.261)    | -0.257<br>(0.261)     |                     |                      | 0.016<br>(0.039)    | 0.012<br>(0.039)     |
| dist to RMG (10km)                       | -0.032*<br>(0.019)   | -0.066***<br>(0.022)  | -0.032*<br>(0.019)   | -0.067***<br>(0.022)  | -0.005**<br>(0.002) | -0.010***<br>(0.003) | -0.005**<br>(0.002) | -0.010***<br>(0.003) |
| river cross                              | 0.896**<br>(0.368)   | 0.912**<br>(0.364)    | 0.874**<br>(0.365)   | 0.890**<br>(0.362)    | 0.101**<br>(0.042)  | 0.103**<br>(0.042)   | 0.100**<br>(0.042)  | 0.103**<br>(0.041)   |
| age                                      | -0.250**<br>(0.127)  | -0.260**<br>(0.126)   | -0.193<br>(0.145)    | -0.210<br>(0.144)     | -0.029*<br>(0.017)  | -0.030*<br>(0.017)   | -0.020<br>(0.021)   | -0.023<br>(0.020)    |
| age sq                                   | 0.001<br>(0.002)     | 0.001<br>(0.002)      | -0.001<br>(0.002)    | -0.000<br>(0.002)     | 0.000<br>(0.000)    | 0.000<br>(0.000)     | -0.000<br>(000.0)   | 0.000<br>(0.000)     |
| Constant                                 | 10.753***<br>(1.718) | 11.150***<br>(1.711)  | 10.464***<br>(2.264) | 10.974***<br>(2.258)  | 1.146*** (0.237)    | 1.201*** (0.236)     | 0.972*** (0.332)    | 1.045*** (0.330)     |
| Observations                             | 2903                 | 2903                  | 2903                 | 2903                  | 2903                | 2903                 | 2903                | 2903                 |

<sup>\*</sup> p < 0.10, \*\* p < 0.05, \*\*\* p < 0.01

Robust standard errors clustered by subdistrict in parentheses

# Summary of Results

- ► Construction of major bridge providing faster connection to the urban manufacturing belt ...
  - had no effect on female economic migration towards Dhaka;

### Summary of Results

- Construction of major bridge providing faster connection to the urban manufacturing belt ...
  - had no effect on female economic migration towards Dhaka;
  - produced divergent outcomes in marriage markets for women from poorer and better-off families;
    - for women from better-off families: increased marriage-related migration towards Dhaka (by marrying men who migrate to Dhaka);
    - for women from poorer families: no change in marriage-related migration towards Dhaka;
    - increased incidence of dowry marriages (for brides from poorer families) and dowry amounts (for brides from better-off families);

### Summary of Results

- Construction of major bridge providing faster connection to the urban manufacturing belt ...
  - had no effect on female economic migration towards Dhaka;
  - produced divergent outcomes in marriage markets for women from poorer and better-off families;
    - for women from better-off families: increased marriage-related migration towards Dhaka (by marrying men who migrate to Dhaka);
    - for women from poorer families: no change in marriage-related migration towards Dhaka;
    - increased incidence of dowry marriages (for brides from poorer families) and dowry amounts (for brides from better-off families);
  - increased labour participation in the manufacturing sector (ready-made garments) for women from better-off families but not for women from poorer families;
  - increased years of schooling for all women and also increased secondary schooling for women from better-off families.

#### Conclusion

- Evidence supports the hypothesis that women are constrained by social norms from migrating to urban areas to take advantage of work-related opportunties;
- But marriage serves as a conduit for long-distance migration, with the implication that growing economic opportunities for women in urban areas affects matching in marriage markets;

#### Conclusion

- Evidence supports the hypothesis that women are constrained by social norms from migrating to urban areas to take advantage of work-related opportunties;
- But marriage serves as a conduit for long-distance migration, with the implication that growing economic opportunities for women in urban areas affects matching in marriage markets;
- Findings have implications for
  - Efficiency
    - social norms on female mobility act as a labour market friction by preventing some workers from supplying labour;
  - Equity
    - parental wealth determines whether individuals are able to take advantage of work opportunities through the marriage market.

Thank You