Structural change, productivity and skills dynamics in Tunisia and Turkey

Gunes Asik, Mohamed Ali Marouani, Michelle Marshalian, Ulas Karakoc

Tobb Economics and Technology University, Turkey; IRD, Paris 1 Pantheon-University and ERF; Paris 1 Pantheon-University and DIAL; and Humboldt University Berlin

by Mohamed Ali Marouani

For the WIDER Development Conference, Bangkok, 11-13 September 2019

Introduction & Motivation

Literature review

Data, Methodology and Empirical Model

Introduction & Motivation

Literature review

Data, Methodology and Empirical Model

Introduction

- In post-independence countries: education as a modernization tool (social welfare and mobility)
- Debate about "Where has all the education gone" in developing countries (Pritchett, 2001)
- Literature on Structural Change and Productivity (McMillan and Rodrik, 2011)
- Interactions between structural change, education upgrading and productivity
 - 1. **First**: Does the increase of the share of educated labor increase productivity ?
 - 2. **Second**: Does this result from an uniform increase or of a structural change favorable to intensive sectors in educated labor?

Literature review

Methodology

Empirical Work

- 1. **First**: Decomposition of productivity growth and skill content of labor force in within and between components
- 2. **Second**: Econometric analysis of the impact of education upgrade on productivity
- Countries: Tunisia and Turkey
- **Database**: sectoral value added, employment and education level in the past five decades + various explanatory variables

Findings

Summary Findings:

- The reallocation of educated labor to more productive sectors contributed to an increase in productivity in Turkey but not in Tunisia.
 - 1. Turkey had a relatively developed private sector since the 1930s
 - 2. In Tunisia, education: consolidation of institutions of the newly independent State
 - 3. Tunisia: Private sector in the 1970s

Structural change increases productivity

- McMillan and Rodrik (2011) & Diao, McMillan and Rodrik (2017): Difference between countries' productivity due to patterns of structural change.
- Caselli and Coleman (2001): regional productivity convergence in the US is attributable to the structural transformation
- Duarte and Restuccia (2010): cross-country productivity gaps reduced in agriculture and industry, but not as much in services
- The skills are more important in "high-skill" industries
 - the interaction between human capital and structural change in high knowledge-intensive industries impacts significantly on economic growth in advanced economies

Introduction & Motivation

Literature review

Data, Methodology and Empirical Model

Data Sources

- Data sources for Turkey:
 - GDP per sector: Statistical yearbooks by Turkish Statistical Agency
 - Employment by education level and sector: Census data (every 5 years)
- Data sources for Tunisia:
 - Value added per sector: Development Plans and Institute of Statistics for the most recent
 - Employment by education level and sector: Censuses, Labor Force Surveys and ITCEQ
- World Penn Tables for Tunisia and Turkey for additional controls

Employment by Education levels

Tunisia = High: university educated. Medium: high school and secondary school. Low and no: primary, 'khatab' or no education. Turkey = High: university educated. Medium: high school, vocational and secondary. Low or no: primary school and no education. Literature review

Methodology

Decomposition Methodology:

• Productivity Decomposition, McMillan and Rodrik (2011)

$$\Delta P_t = \sum_{i=1}^n \Theta_{i,t-k} \Delta P_{i,t} + \sum_{i=1}^n P_{i,t} \Delta \Theta_{i,t}$$
(1)

 Skill Upgrading Decomposition, Bernard, Bound and Machin (1998)

$$\Delta Sk_t = \sum_{i=1}^n \Delta sk_{i,t} \Theta_{i,t} + \sum_{i=1}^n \Delta \Theta_{i,t} sk_{i,t}$$
(2)

where P_t is aggregate productivity, $P_{i,t}$ is sectoral productivity, $\Theta_{i,t}$ is the share of sector i in total employment, Sk_t is the share of highly educated labor in total labor and $sk_{i,t}$ is the share of highly educated labor by sector.

Productivity Growth and changes in employment shares in Tunisia

 $11 \, / \, 21$

Productivity Growth and changes in employment shares in Turkey

Productivity Decomp à la McMillan and Rodrik (2011)

Skills Decomp à la Bernard, Bound and Machin (1998)

Empirical Approach

Back to Slides

Using OLS and 2SLS, we estimate the following equation for each country:

$Y_{i,t} = \beta_0 + \beta_1 \Delta Skill_{i,t} + \beta_2 \Delta X_{i,t} + \beta_3 \rho_t + \Delta W'_t \gamma + \lambda_i + \tau_t + \epsilon_{i,t}$ (3)

- Y_{i,t} is the productivity growth in sector i between t 1 and t;
- ΔSkill_{i,t} is either i.) total skill upgrading, or, ii.) between skill upgrading, or iii.) within skill upgrading in sector i between t 1 and t;
- ΔX_{i,t} denotes the change in relative comparative advantage (RCA) of Turkish or Tunisian exports;
- ρ_t is the average rainfall;
- ΔW_t denotes real capital stock growth (at constant 2011 national prices) and change in human capital
 index between t 1 and t
- λ_i denotes sector effects and τ_t year effects.

Empirics: The Relationship Between Skill Upgrading and Productivity

- Our starting point is understanding how skill upgrading affects productivity in Turkey and Tunisia.
- Our main variables of interest:
 - **Total skill upgrading:** increase in % of the share of the highest skilled category of labor in total employment,
 - Skill upgrading within: increase in % of the share of the highest skilled category of labor in total employment due to the within sector component
 - **Skill upgrading between:** increase in % of the share of the highest skilled category of labor in total employment due to the between sector component
- Skill upgrading between is also known as Skill Biased Structural Change (SBSC)

Literature review

Data, Methodology and Empirical Model

Empirical Strategy

- Skills and productivity are endogenous and it is notoriously difficult to isolate the independent effects of the two.
- We first document correlations based on OLS estimations and then try to establish causal impact (of skill upgrading) on productivity growth

Literature review

Data, Methodology and Empirical Model

Instruments

Instruments

- 1. L5. Share of College Graduates in Total Employment
- 2. L5. Total, Between or Within Skill Upgrading

Empirical Strategy (Preliminary)

- Control variables (all from World Penn Tables) are:
 - Capital stock at constant 2011 national prices (in logs)
 - Exchange rate, national currency/USD (in logs)
 - Share of merchandise exports at current PPPs
 - Share of merchandise imports at current PPPs
 - Human capital index
 - L5. Capital stock at constant 2011 national prices (in logs)
 - Year effects, sector effects and sector specific linear trends.

2SLS Results for Turkey & Tunisia

	(A) Turkey			(B) Tunisia		
	Total Skill	Between	Within	Total Skill	Between	Within
Chill Hagradiag	0.122*			2 721		
Skii Opgrading	[0 074]			[23 909]		
Skill Upgrading Between	[]	0.259*		[]	-23.826	
		[0.144]			[55.082]	
Skill Upgrading Within			0.163			58.986
	2/50	1000	[0.169]		1/50	[51.740]
	YES	YES	YES	YES	YES	YES
Coefficients of Instruments						
L5. Share of College Grad.	-38.420***	-24.410***	-14.145**	-0.121**	-0.059	-0.080***
	[7.000]	[5.700]	[0.570]	[0.047]	[0.044]	[0.020]
L5. Total Skill Upgrading	-0.372			0.009		
	[0.138]			[0.123]		
L5. Between Skill Upgrading		-0.390***			0.019	
		[0.130]			[0.150]	
L5. Within Skill Upgrading			-0.342			-0.115
			[0.212]			[0.110]
Sanderson-Windmeijer F Statistic	13.04	22.92	2 74	3 42	1.05	6 34
	pval(0.000)	pval(0.000)	pval(0.0837)	pval(0.056)	pval(0.373)	pval(0.009)
Hansen J Statistic	0.003	0.708	0.913	5.685	3.831	3.081
	pval(0.955)	pval(0.400)	pval(0.339)	pval(0.017)	pval(0.050)	pval(0.079)

(1) Newey West standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1.

(2) Null hypothesis for S.-Windmeijer weak identification test is that the particular endogenous regressor

in question is unidentified.

(3) Null for Hansen's J statistic is that the instruments are uncorrelated with the error term.

Conclusions

- In Turkey, instrumental analysis suggest that the reallocation of skills between sectors positively impacted productivity.
- No similar effect in Tunisia (weak instrument).

Future Work

• Micro-level analysis focusing on Tunisia or Turkey separately.