Rural Infrastructure Development and Economic Activity

Ritam Chaurey ¹
joint with
Duong Le ²

¹Johns Hopkins University (SAIS) ²Duke University

September 2019

RESEARCH QUESTION

Do infrastructure improvement policies causally affect local economic activity?

Infrastructure

- Investments in physical infrastructure (roads, electricity, telecommunications, fast Internet, dams, irrigation, etc.) are important determinants of economic growth
- Most of the literature on the effects of infrastructure have focused either on local economic activity/households/large firms
 - Positive effects Dams (Duflo and Pande, 2007), Rural electrification (Dinkelman (2011), electricity prices and shortages (Abeberese, 2016; Allcott et al., 2016), fast Internet (Hjort and Poulsen (2018), Rural roads and highways (Aggarwal (2018), Ghani et al. (2016))
 - No effects Rural electrification (Burlig (2016), Lee et. al (2019), rural roads (Asher and Novosad (2019))

PLACE-BASED POLICIES

- Infrastructure investments are inherently "place-based" policies (non-random placement)
- Governments throughout the world have used "place-based policies" to generate employment and productivity in lagging regions
 - financial incentives (tax exemptions, subsidies), land grants, infrastructure and other benefits to firms
- Place-based policies are popular across the world
- In rural settings whether there will be demand for the infrastructure services is not clear
- $lue{}$ In this paper ightarrow focus on the effects of a place-based infrastructure scheme on economic activity with a focus on firms

BACKGROUND: MICROENTERPRISES

- A microenterprise in developing countries is mostly unregistered (informal), self-owned, employing only few workers
 - household-, family-owned entities
- Prevalent and important in all developing countries
 - accounts for 76% of employment in India's rural economy (Economic Census 2014)
 - Previous work on the effects of infrastructure and/or place-based policies have ignored this important sector
- ⇒ Crucial to policymakers' goals of economic growth and poverty eradication in backward regions

- Village employment increases
 - Village employment in microenterprises increase
 - No change in village employment in formal firms

- Village employment increases
 - Village employment in microenterprises increase
 - No change in village employment in formal firms
- Performance of micro manufacturing enterprises improves
 - increase in employment

- Village employment increases
 - Village employment in microenterprises increase
 - No change in village employment in formal firms
- Performance of micro manufacturing enterprises improves
 - increase in employment
- No change for formal firms

- Village employment increases
 - Village employment in microenterprises increase
 - No change in village employment in formal firms
- Performance of micro manufacturing enterprises improves
 - increase in employment
- No change for formal firms
- Extensive margin number of microenterprises increases

- Village employment increases
 - Village employment in microenterprises increase
 - No change in village employment in formal firms
- Performance of micro manufacturing enterprises improves
 - increase in employment
- No change for formal firms
- Extensive margin number of microenterprises increases
- Wages and number of days worked for individuals increase, household consumption expenditure increases

Mechanisms:

- improvements in infrastructural environment (measured by night light intensity)
- reduction in probability that firms experienced power shortage (electrification channel)
- reduction in "no access to raw materials" (connectivity channel)

Mechanisms:

- improvements in infrastructural environment (measured by night light intensity)
- reduction in probability that firms experienced power shortage (electrification channel)
- reduction in "no access to raw materials" (connectivity channel)

Heterogeneity

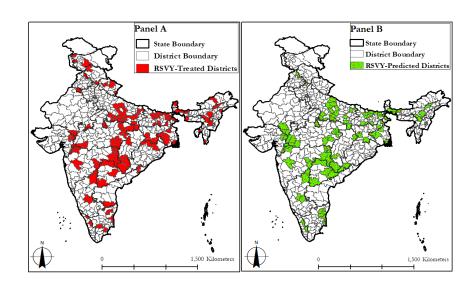
- Effects stronger in electricity and road intensive industries
- Effects larger in villages that had electricity and roads at the baseline
- Distance to district headquarters matter

RASHTRIYA SAM VIKAS YOJANA (RSVY)

- Policy Intervention: RSVY
 - launched in the fiscal year of 2003-04
 - central government identified most "backward" districts based on a completely transparent selection procedure
 - regression discontinuity design
 - eligible districts received bundled infrastructure grants for improving rural connectivity, electrification, agricultural system, etc.

RASHTRIYA SAM VIKAS YOJANA (RSVY)

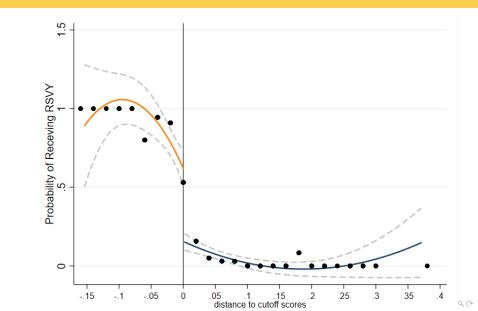
- 147 backward districts selected from 17 States
- Each district was entitled to receive grants amounts of 450 million Indian Rupees (approx. \$7.2 million USD, 1.2% of the treated districts' GDP)
- Equally divided over the course of 3 fiscal years: 2004-05, 2005-06, and 2006-07


EMPIRICAL DESIGN - DETERMINANTS OF ELIGIBILITY

- Selection process is transparent, involving two steps:
- First step: central government determined the number of treated districts that would be assigned to each of India's states
 - proportional to % poverty headcount ratio
- **Second step:** each state government selected the districts eligible to receive RSVY grants
 - districts with lowest historical backwardness rankings (i.e. most backward) were selected
- Regression Discontinuity Design reconstruction of selection rule allows us to compare marginal districts around the eligibility threshold

RECONSTRUCTING THE SELECTION PROCESS

- Reconstruct the Backwardness Score Index
 - value of output per agricultural worker (1990-1993);
 - 2 agriculture wage rate (1996-1997);
 - 3 districts' percentage of low-caste (tribal) populations (1991)
- Rank districts' scores within State, determine:
 - cutoff score for each State
 - 2 list of districts should have been* eligible
 - RD running variable: district's score distance to state-specific score threshold
- Fuzzy: existence of non-compliance with proposed assignment rule (endogenous selection)
- lacktriangledown Use reconstructed selection as **instrument** for actual selection (endogenous)
 - 81% prediction accuracy


ACTUAL ASSIGNMENT - MAP

EMPIRICAL STRATEGY

- Empirical Strategy: Regression Discontinuity Design
 - Running variable: districts' backwardness score distance from the State's cutoff (standardized at 0)
 - Instrument: predicted placement as per guideline (exogenous);
 replace endogenous actual assignment
- **RD identification assumption**: marginal districts around cutoff were selected "as good as random" (Lee and Lemieux, 2010)
 - 1 districts cannot manipulate eligibility
 - 2 adopt narrow bandwidth around threshold

FIRST STAGE - DISCONTINUITY IN PROBABILITY OF TREATMENT

EMPIRICAL SPECIFICATIONS - INTENT TO TREAT

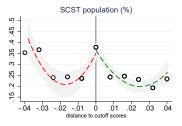
$$y_{idst} = \alpha_0 + \alpha_1 RSVY_{ds} + \delta(z_{ds}, RSVY_{ds}) + X_{dt-1}^1 \alpha_2 + X_d^2 \alpha_3 + \pi_s + \varepsilon_{idst}$$

- *y_{idst}*: firm/village/household-level outcomes
- RSVY_{ds}: indicator for districts that **should** have received RSVY
- $\delta(z_{ds}, RSVY_{ds})$: polynomial function of running variable z_{ds} and treatment dummy $RSVY_{ds}$
- X_{dt-1}^1 : district's baseline socio-demographic characteristics
 - Population; share of SC/ST; prevalence of public facilities
- X_d^2 : time-invariant (geographic) controls
 - district area; boundary; elevation; distance to nearest city; avg distance to the nearest 5 cities
- \blacksquare π_s : state fixed effects

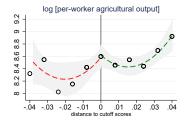
EMPIRICAL SPECIFICATIONS - TREATMENT ON THE TREATED

- Districts that actually got the grant may be endogenously picked by the state
- Instrument the districts that **actually** received the grant using the districts that **should** have received the grant using the distance score
- Identifying instrument: $\mathbf{1}\{z_{ds} \leq 0\}$

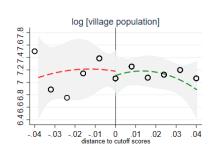
$$y_{idst} = \beta_0 + \frac{\beta_1}{1} \{ z_{ds} \le 0 \} + \delta(z_{ds}, 1\{z_d \le 0\}) + X_{dt-1}^1 \beta_2 + X_d^2 \beta_3 + \pi_s + \varepsilon_{idst}$$

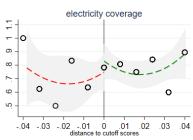

DATA

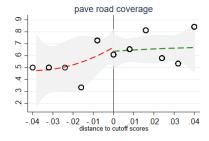
- Economic Census covers all nonfarm activity in India
 - Fifth round (2005 post-policy period)
 - Fourth round (1998, pre-policy period)
- National Sample Survey Unorganized Manufacturing Enterprise (Schedule 2.2) (NSS) - microenteprises
 - Round 62 (2005-06, post-policy period)
 - Round 56 (2000-01, pre-policy period)
- Annual Survey of Industries firm-level data (2001-06) formal firms
- NSS Employment-Unemployment Surveys (Schedule 10) individual and household outcomes
 - Round 62 (2005-06, post-policy period)
 - Round 55 (1999-00, pre-policy period)
- Population Census (2001 -baseline) for socio-demographic controls
- Nighttime Light Intensity collected from NASA's satellite images (processed by the NOAA)

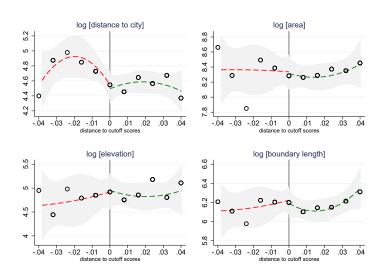

SUMMARY STATISTICS - FIRM LEVEL

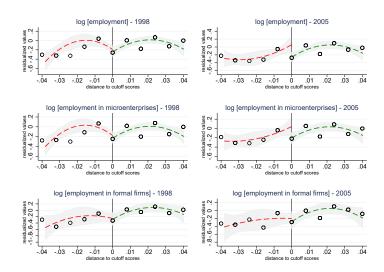
	Observations	Mean	SD	Source
Panel A: District's Employment and Firms (1998)				
1.Employment Outcomes (per firm):				
Total Employment	4,471,441	2.174	30.733	EC 1998
Formal Employment	32,416	47.292	357.620	EC 1998
Informal Employment	4,439,025	1.844	1.600	EC 1998
2. Firm Outcomes (per village):				
Total Firms	97,863	98,762.14	96,516.75	EC 1998
Formal Firms	97,863	526.00	595.36	EC 1998
Informal Firms	97,863	98,236.13	96,066.84	EC 1998
Panel B: Microenterprises (2000-01)				
1. Outcome Measures:				
Employment (labor count)	20,191	2.156	2.810	NSS56 -Sch. 2.2
Revenue ('000 Rs)	20,191	86.844	461.083	NSS56 -Sch. 2.2
2. Mechanism Measures:				
Problem of Experiencing Power Cut (%)	20,191	0.188	0.391	NSS56 -Sch. 2.2
Problem with Access to Materials (%)	20,191	0.185	0.388	NSS56 -Sch. 2.2


VALIDITY OF RDD - SOCIO-DEMOGRAPHIC





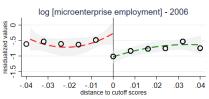

Validity of RDD - infrastructure



VALIDITY OF RDD - GEOGRAPHIC

Empirical Results

VILLAGE EMPLOYMENT


VILLAGE EMPLOYMENT (ECONOMIC CENSUS 2005) ↑

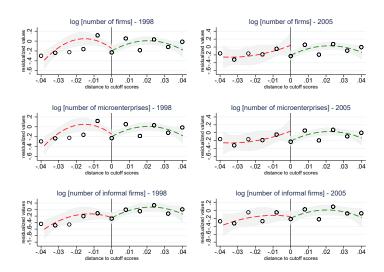
Linear	Quadratic	Linear	Quadratic	Linear	Quadratic
(1)	(2)	(3)	(4)	(5)	(6)
0.120	0.111	0.122	0.139*	0.144*	0.175**
(0.0851)	(0.0817)	(0.0805)	(0.0740)	(0.0770)	(0.0733)
0.580	0.580	0.572	0.572	0.579	0.580
73,335	73,335	83,356	83,356	92,677	92,677
0.123	0.115	0.129	0.145**	0.149*	0.183**
(0.0827)	(0.0792)	(0.0786)	(0.0727)	(0.0756)	(0.0716)
0.590	0.590	0.582	0.582	0.589	0.590
73,302	73,302	83,313	83,313	92,633	92,633
0.0550	0.0649	0.0170	0.0160	0.0332	0.0184
(0.0698)	(0.0728)	(0.0683)	(0.0722)	(0.0573)	(0.0577)
0.102	0.102	0.099	0.099	0.115	0.115
7,100	7,100	7,627	7,627	8,942	8,942
Yes	Yes	Yes	Yes	Yes	Yes
Yes	Yes	Yes	Yes	Yes	Yes
	0.120 (0.0851) 0.580 73,335 0.123 (0.0827) 0.590 73,302 0.0550 (0.0698) 0.102 7,100 Yes	(1) (2) 0.120 0.111 (0.0851) (0.0817) 0.580 0.580 73,335 73,335 0.123 0.115 (0.0827) (0.0792) 0.590 0.590 73,302 73,302 0.0550 0.0649 (0.0698) (0.0728) 0.102 0.102 7,100 7,100 Yes Yes Yes	(1) (2) (3) 0.120 0.111 0.122 (0.0851) (0.0817) (0.0805) 0.580 0.580 0.572 73,335 73,335 83,356 0.123 0.115 0.129 (0.0827) (0.0792) (0.0786) 0.590 0.590 0.582 73,302 73,302 83,313 0.0550 0.0649 0.0170 (0.0698) (0.0728) (0.0683) 0.102 0.102 0.099 7,100 7,100 7,627 Yes Yes Yes Yes Yes Yes	(1) (2) (3) (4) 0.120 0.111 0.122 0.139* (0.0851) (0.0817) (0.0805) (0.0740) 0.580 0.580 0.572 0.572 73,335 73,335 83,356 83,356 0.123 0.115 0.129 0.145** (0.0827) (0.0792) (0.0786) (0.0727) 0.590 0.590 0.582 0.582 73,302 73,302 83,313 83,313 0.0550 0.0649 0.0170 0.0160 (0.0698) (0.0728) (0.0683) (0.0722) 0.102 0.102 0.099 0.099 7,100 7,100 7,627 7,627 Yes Yes Yes Yes Yes	(1) (2) (3) (4) (5) 0.120 0.111 0.122 0.139* 0.144* (0.0851) (0.0817) (0.0805) (0.0740) (0.0770) 0.580 0.572 0.572 0.579 73,335 73,335 83,356 83,356 92,677 0.123 0.115 0.129 0.145** 0.149* (0.0827) (0.0792) (0.0786) (0.0727) (0.0756) 0.590 0.590 0.582 0.582 0.589 73,302 73,302 83,313 83,313 92,633 0.0550 0.0649 0.0170 0.0160 0.0332 (0.0698) (0.0728) (0.0683) (0.0722) (0.0573) 0.102 0.102 0.099 0.099 0.115 7,100 7,100 7,627 7,627 8,942 Yes Yes Yes Yes Yes Yes Yes Yes Yes

^{***} p < 0.01, ** p < 0.05, * p < 0.1

MICROENTERPRISES - EMPLOYMENT

Microenteprises - Employment (2005-06) \uparrow

	1.	0 1	1.	0 1 .:	1.	0 1 .:
	Linear	Quadratic	Linear	Quadratic	Linear	Quadratic
	(1)	(2)	(3)	(4)	(5)	(6)
Panel A: Employment (log)						
RD Estimate	0.124**	0.132***	0.0975*	0.0939*	0.0921**	0.0856**
S.E.	(0.0500)	(0.0490)	(0.0511)	(0.0530)	(0.0410)	(0.0419)
R-square	0.345	0.346	0.342	0.342	0.349	0.350
Observations	6,758	6,758	7,579	7,579	8,580	8,580
Panel B: Employment (level)						
RD Estimate	0.675***	0.672***	0.558***	0.566***	0.479***	0.465***
S.E.	(0.212)	(0.201)	(0.200)	(0.209)	(0.165)	(0.169)
R-square	0.230	0.230	0.237	0.237	0.240	0.241
Observations	6,758	6,758	7,579	7,579	8,580	8,580
Bandwidth	0	.02	0.	025	0	.03
State Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes
Industry Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes
District Controls	Yes	Yes	Yes	Yes	Yes	Yes
Firm Controls	Voc	Voc	Voc	Voc	Voc	Voc


^{***} p < 0.01, ** p < 0.05, * p < 0.1

FORMAL FIRMS - NO EFFECT

	Employ	ment (log)	Rever	nue (log)	Employ	Employment (log) Revenue (log)		Employ	Employment (log)		nue (log)	
	Linear	Quadratic	Linear	Quadratic	Linear	Quadratic	Linear	Quadratic	Linear	Quadratic	Linear	Quadratic
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
Year: 2004	0.128	0.141	-0.0807	0.0435	0.0597	0.0642	-0.160	-0.118	-0.0125	-0.0252	0.0914	-0.0571
	(0.132)	(0.131)	(0.188)	(0.211)	(0.125)	(0.130)	(0.190)	(0.214)	(0.107)	(0.111)	(0.167)	(0.173)
	2,206	2,206	1,936	1,936	2,334	2,334	2,051	2,051	2,742	2,742	2,396	2,396
Year: 2005	0.254	0.267	0.338	0.460	0.190	0.195	0.175	0.208	-0.0560	-0.0164	0.162	0.0623
	(0.174)	(0.168)	(0.291)	(0.298)	(0.156)	(0.154)	(0.289)	(0.291)	(0.136)	(0.143)	(0.238)	(0.252)
	2,043	2,043	1,749	1,749	2,164	2,164	1,848	1,848	2,602	2,602	2,197	2,197
Bandwidth /z/	0.02			0.025			0.03					
State Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
District Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Firm Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

*** p < 0.01, ** p < 0.05, * p < 0.1

EXTENSIVE MARGIN – NUMBER OF FIRMS (2005)

Extensive Margin − Number of firms (2005) ↑

	Linear	Quadratic	Linear	Quadratic	Linear	Quadratic				
	(1)	(2)	(3)	(4)	(5)	(6)				
Panel A: Village level – Number of firms (log)										
1. All Firms										
RD Estimate	0.0985	0.0890	0.130*	0.141*	0.151**	0.180**				
S.E.	(0.0855)	(0.0807)	(0.0737)	(0.0715)	(0.0744)	(0.0710)				
R-square	0.599	0.600	0.593	0.594	0.600	0.600				
Observations	73,335	73,335	83,356	83,356	92,677	92,677				
2. Microenterprises										
RD Estimate	0.0980	0.0885	0.130*	0.142*	0.151**	0.181**				
S.E.	(0.0854)	(0.0807)	(0.0737)	(0.0716)	(0.0744)	(0.0710)				
R-square	0.599	0.599	0.593	0.593	0.599	0.600				
Observations	73,302	73,302	83,313	83,313	92,633	92,633				
3. Formal Firms										
RD Estimate	0.0465	0.0445	0.0279	0.0275	0.0188	0.00864				
S.E.	(0.0384)	(0.0402)	(0.0391)	(0.0407)	(0.0314)	(0.0335)				
R-square	0.134	0.134	0.131	0.131	0.141	0.141				
Observations	7,100	7,100	7,627	7,627	8,942	8,942				
	444	. 0 01 **		. 0 1						

^{***} *p* < 0.01, ** *p* < 0.05, * *p* < 0.1

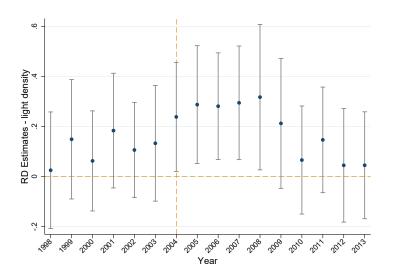
Microenterprises – Established < 3 years ago (%) (2005) \uparrow

	Linear	Quadratic	Linear	Quadratic	Linear	Quadratic				
	(1)	(2)	(3)	(4)	(5)	(6)				
Panel B: Microenterprises – Established less than 3 years ago(%)										
RD Estimate	0.0784**	0.0519	0.107***	0.108***	0.0998***	0.104***				
S.E.	(0.0327)	(0.0318)	(0.0313)	(0.0309)	(0.0320)	(0.0323)				
R-square	0.183	0.187	0.173	0.173	0.158	0.159				
Observations	6,528	6,528	7,349	7,349	8,350	8,350				
Bandwidth (z)	0.	.02	0.0)25	0.	03				
State Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes				
District Controls	Yes	Yes	Yes	Yes	Yes	Yes				
Village Controls	Yes	Yes	Yes	Yes	Yes	Yes				
	444	0 04 44	0.05.4							

Individual and household outcomes $(2005-06) \uparrow$

	Linear	Quadratic	Linear	Quadratic	Linear	Quadratic				
	(1)	(2)	(3)	(4)	(5)	(6)				
Panel A: Wage (lo	g)									
RD Estimate	0.123*	0.123*	0.114*	0.101*	0.135**	0.128**				
S.E.	(0.0728)	(0.0728)	(0.0619)	(0.0585)	(0.0538)	(0.0544)				
R-square	0.360	0.360	0.360	0.361	0.358	0.358				
Observations	4,914	4,914	5,422	5,422	6,232	6,232				
Panel B: Days wor	Panel B: Days worked (in the last 7 days) (log)									
RD Estimate	0.0331**	0.0333**	0.0326*	0.0299*	0.0318**	0.0320**				
S.E.	(0.0159)	(0.0157)	(0.0177)	(0.0175)	(0.0145)	(0.0144)				
R-square	0.051	0.051	0.050	0.050	0.049	0.049				
Observations	31,290	31,290	34,818	34,818	39,143	39,143				
Panel C: Monthly	household	consumptio	n expendit	ure (log)						
RD Estimate	0.0883*	0.0867*	0.122**	0.114**	0.122***	0.122***				
S.E.	(0.0489)	(0.0512)	(0.0477)	(0.0466)	(0.0423)	(0.0419)				
R-square	0.191	0.191	0.182	0.184	0.162	0.162				
Observations	6,602	6,602	7,357	7,357	8,249	8,249				
Bandwidth	0.02		0.025		0.03					
State Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes				
District Controls	Yes	Yes	Yes	Yes	Yes	Yes				
Individual Controls	Yes	Yes	Yes	Yes	Yes	Yes				
*** p < 0.01 ** p < 0.05 * p < 0.1										

TREATMENT ON TREATED ESTIMATES (IV)


		Linear			Quadratic		
Dependent Variable	RD Estimate	S.E.	R-Square	RD Estimate	S.E.	R-Square	Observations
Panel A: RSVY Impact on Em	nlovment – Eco	nomic Ce	nsus 2005				
A1: Village Employment (log)	piojinent Let		1505 2005	1			
Total Employment	0.591*	(0.345)	0.560	0.748*	(0.423)	0.553	92.677
Formal Employment	0.149	(0.144)	0.112	0.116	(0.137)	0.113	8.942
Informal Employment	0.602*	(0.348)	0.568	0.772*	(0.429)	0.560	92.633
A2: Firm-level Employment (log)		(0.0.0)		*****	(=: -==)		,
All Firms	0.120**	(0.0606)	0.015	0.120**	(0.0607)	0.015	4,921,316
Formal Firms	-0.147	(0.138)	0.070	-0.147	(0.140)	0.070	21.109
Informal Firms	0.113*	(0.0581)	0.016	0.113*	(0.0581)	0.016	4,900,207
Panel B: RSVY Impact on Mid	roenternrises –	NSS (Sch	edule 2.2)	2005-06			
Employment (log)	0.327**	(0.154)	0.242	0.332**	(0.158)	0.242	7.579
Employment (count)	1.694**	(0.697)	0.132	1.765**	(0.718)	0.129	7,579
Panel C: RSVY Impact on Ho	scapold Walfare	NEC (chadula 10	2005.06			
Wages (log)	0.306	(0.197)	0.346	0.261	(0.171)	0.352	5,422
Days worked (last 7 days) (log)	0.103	(0.0692)	0.029	0.0996	(0.0684)	0.030	34.818
MHCE (log)	0.390*	(0.220)	0.029	0.360*	(0.205)	0.156	7,357
Panel D: Extensive Margin – F	SVV Impacts	n Eirm Er	tablichmont	ļ			
D1: Village level – Firm Quantity		/// / //// La	cabiisiiiieiii				
All Firms	0.599*	(0.342)	0.579	0.753*	(0.419)	0.571	92.677
Formal Firms	0.0554	(0.0724)	0.140	0.0338	(0.419)	0.141	8.942
Informal Firms	0.599*	(0.343)	0.578	0.754*	(0.421)	0.570	92.633
D2: Microenterprises – Establishe			0.570	0.754	(0.721)	0.570	92,033
D2. WICTOEITEI prises – Establishe	0.279**	(0.126)	0.152	0.292**	(0.137)	0.150	7.579
	0.219	(0.120)	0.132	0.232	(0.137)	0.130	1,519
Panel E: Microenterprises - Ev	idence on Impa	ct Channe	els	'			
Power Cut (%)	-0.213**	(0.107)	0.123	-0.254	(0.181)	0.124	7,579
No Access to Materials (%)	-0.645**	(0.313)	0.052	-0.659**	(0.328)	0.047	7,579
	*** /	< 0.01, **	p < 0.05, *	p < 0.1			

MECHANISMS

Mechanisms: Improved infrastructural condition relaxes production constraints for firms and eases supply chain problems

- Improved overall infrastructure proxied by nightlight
- Lower probability of experiencing power cut (electrification)
- reduction in "no access to raw materials" (connectivity)
- Effects stronger in electricity and road intensive industries
- Effects stronger in villages that had electricity and roads at the baseline

DISTRICT-WISE IMPROVEMENT IN INFRASTRUCTURE (NIGHT-LIGHT INTENSITY)

MECHANISM: ELECTRIFICATION AND CONNECTIVITY \(\)

	Linear	Quadratic	Linear	Quadratic	Linear	Quadratio
	(1)	(2)	(3)	(4)	(5)	(6)
Panel A: Firm ex	periencing pow					
RD Estimate	-0.139**	-0.126**	-0.0723	-0.0834	-0.0881*	-0.0860*
S.E.	(0.0562)	(0.0555)	(0.0556)	(0.0565)	(0.0459)	(0.0468)
R-square	0.211	0.214	0.195	0.199	0.185	0.185
Observations	6,758	6,758	7,579	7,579	8,580	8,580
Panel B: Firm ha	s no access to	raw materi	als (%)			
RD Estimate	-0.178**	-0.183**	-0.171**	-0.171**	-0.110	-0.103
S.E.	(0.0796)	(0.0804)	(0.0791)	(0.0780)	(0.0823)	(0.0790)
R-square	0.253	0.253	0.233	0.233	0.210	0.211
Observations	6,758	6,758	7,579	7,579	8,580	8,580

Bandwidth	0.02		0.025		0.03	
State Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes
Industry Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes
District Controls	Yes	Yes	Yes	Yes	Yes	Yes
Firm Controls	Yes	Yes	Yes	Yes	Yes	Yes

^{***} *p* < 0.01, ** *p* < 0.05, * *p* < 0.1

ELECTRICITY-INTENSIVE INDUSTRIES

	(1)	(2)	(3)
Panel A: Electricity-intensive indust	ries	. ,	. ,
1. Employment (log)			
RD Estimate	0.220***	0.0975*	0.0661
S.E.	(0.0836)	(0.0511)	(0.0828)
R-squared	0.423	0.342	0.432
Observations	2,389	7,575	1,858
Degree of electricity intensity (tercile)	>66th	33rd to 66th	<33rd
2. Revenue (log)			
RD Estimate	0.804***	0.546***	0.156
S.E.	(0.219)	(0.145)	(0.241)
R-square	0.522	0.541	0.677
Observations	2,389	7,575	1,858
Degree of electricity intensity (tercile)	>66th	33rd to 66th	<33rd

^{***} *p* < 0.01, ** *p* < 0.05, * *p* < 0.1

ROAD-INTENSIVE INDUSTRIES

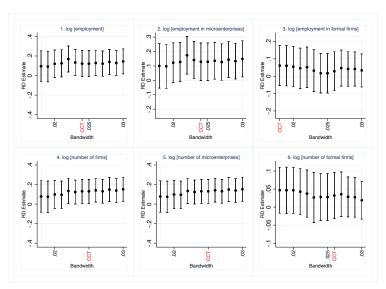
	(1)	(2)	(3)
Panel B: Road-intensive industries	i		
1. Employment (log)			
RD Estimate	0.125	0.0839	0.0410
S.E.	(0.0851)	(0.0619)	(0.0443)
R-squared	0.376	0.323	0.332
Observations	2,599	2,828	2,152
Degree of road dependency (tercile)	>66th	33rd to 66th	<33th
2. Revenue (log)			
RD Estimate	1.045***	0.478**	0.213
S.E.	(0.330)	(0.214)	(0.174)
R-square	0.606	0.597	0.363
Observations	2,599	2,828	2,152
Degree of road dependency (tercile)	>66th	33rd to 66th	<33th
*** 0 01 ** -	O OF *	0 1	

*** *p* < 0.01, ** *p* < 0.05, * *p* < 0.1

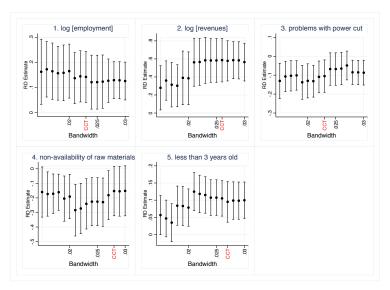
HETEROGENEITY BY PRE-RSVY VILLAGE CHARACTERISTICS

	1:	0 1 .:	1.	0 1 .:					
	Linear	Quadratic	Linear	Quadratic					
	(1)	(2)	(3)	(4)					
Panel A: Village e	mployment in microent	erprises (log)							
RD estimate	-0.0227	-0.0183	0.190**	0.199**					
S.E.	(0.155)	(0.154)	(0.0895)	(0.0821)					
R-squared	0.368	0.368	0.576	0.577					
Observations	13,477	13,477	45,956	45,956					
Sample	No roads or electricity	No roads or electricity	Roads and electricity	Roads and electricity					
Panel B: Number	of microenterprises in t	he village (log)							
	·	<u> </u>							
RD estimate	-0.0170	-0.0163	0.179**	0.186**					
S.E.	(0.150)	(0.150)	(0.0844)	(0.0800)					
R-squared	0.383	0.383	0.586	0.587					
Observations	13,477	13,477	45,956	45,956					
Sample	No roads or electricity	No roads or electricity	Roads and electricity	Roads and electricity					
State Fixed Effects	Yes	Yes	Yes	Yes					
District Controls	Yes	Yes	Yes	Yes					
Village Controls	Yes	Yes	Yes	Yes					

PROXIMITY TO DISTRICT HEADQUARTERS


Microenterprise Employment Number of Microenterprise										
	Microen	terprise Em	ployment	Numbe		nterprises				
	(1)	(2)	(3)	(4)	(5)	(6)				
Panel A: Standardized distan	ce interact	ion								
RSVY X standardized distance	-0.0348	-0.0413*	-0.0487*	-0.0343	-0.0442*	-0.0494**				
	(0.0221)	(0.0235)	(0.0252)	(0.0219)	(0.0225)	(0.0242)				
R-squared	0.603	0.594	0.601	0.617	0.609	0.614				
Observations	88,598	79,278	69,267	88,598	79,278	69,267				
Panel B: Log distance interact	ction									
RSVY X log(distance)	-0.0477	-0.0606*	-0.0753*	-0.0457	-0.0651*	-0.0761**				
	(0.0339)	(0.0363)	(0.0385)	(0.0326)	(0.0334)	(0.0355)				
R-squared	0.603	0.594	0.601	0.617	0.609	0.614				
Observations	88,600	79,280	69,269	88,600	79,280	69,269				
Bandwidth	0.03	0.025	0.02	0.03	0.025	0.02				
State Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes				
District Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes				
Village Controls	Yes	Yes	Yes	Yes	Yes	Yes				

*** *p* < 0.01, ** *p* < 0.05, * *p* < 0.1


ROBUSTNESS

- Results robust to different bandwidths (including data-driven bandwidths)
- No effect using baseline data (pre-RSVY)
- No effect at hypothetical cutoffs

SENSITIVITY ANALYSIS (VILLAGE OUTCOMES)

SENSITIVITY ANALYSIS (MICROENTERPRISE OUTCOMES)

PRE-RSVY - No Effect using Baseline Data

		Linear		(Quadratic		
	RD Estimate	S.E.	R-Square	RD Estimate	S.E.	R-Square	Observations
Panel A: RSVY Impact on Empl	ovment – Ecor	nomic Cens	sus 1998				
A1: Village Employment (log)	.,						
Total Employment	0.101	(0.0978)	0.488	0.112	(0.0965)	0.488	83,695
Informal Employment	0.111	(0.0947)	0.502	0.124	(0.0926)	0.502	83,591
Formal Employment	-0.0897	(0.0960)	0.059	-0.0910	(0.0937)	0.059	7,546
A2: Firm-level Employment (log)		, ,			` ′		
All Firms	-0.0367	(0.0418)	0.020	-0.0351	(0.0393)	0.024	3,449,092
Formal Firms	-0.0396	(0.0812)	0.065	-0.0342	(0.0739)	0.068	22,333
Informal Firms	-0.0341	(0.0393)	0.022	-0.0326	(0.0374)	0.026	3,426,759
Panel B: RSVY Impact on Micro	oenterprises –	NSS (Sche	dule 2.2) 2	000-01			
Employment (log)	0.0809	(0.0542)	0.216	0.0730	(0.0524)	0.216	17,842
Employment (count)	0.192	(0.153)	0.121	0.205	(0.152)	0.121	17,842
Revenue (log)	0.0304	(0.162)	0.344	0.0622	(0.158)	0.345	17,842
Revenue (level)	-10,881	(8,974)	0.083	-10,251	(8,719)	0.083	17,842
Panel C: RSVY Impact on Hous	ehold Welfare	– NSS (Sc	hedule 10)	1999-00			
Wages (log)	0.0810	(0.0673)	0.332	0.0817	(0.0683)	0.332	16,253
Days worked (last 7 days) (log)	0.0466	(0.0407)	0.062	0.0488	(0.0400)	0.062	35,265
MHCE (log)	-0.0404	(0.0581)	0.218	-0.0419	(0.0580)	0.220	6,450
Panel D: Extensive Margin - RS	VY Impacts or	ı Firm Est	ablishment				
Village level - Firm Quantity (log)	•						
All Firms	0.0990	(0.0870)	0.499	0.116	(0.0824)	0.500	83,695
Formal Firms	-0.0224	(0.0604)	0.099	-0.0240	(0.0565)	0.100	7,546
Informal Firms	0.101	(0.0872)	0.498	0.118	(0.0825)	0.499	83,591
Panel E: Microenterprises - Evid	lence on Impa	t Channel	s	'	` ′		
Power Cut (%)	-0.0426	(0.0561)	0.107	-0.0456	(0.0543)	0.107	17,842
No Access to Raw Materials (%)	-0.0393	(0.0596)	0.139	-0.0380	(0.0596)	0.139	17,842

NO EFFECT AT HYPOTHETICAL CUTOFF

		Linear		(Quadratic		
	RD Estimate	S.E.	R-Square	RD Estimate	S.E.	R-Square	Observations
Panel A: RSVY Impact on Emp	F		2005				
A1: Village Employment (log)	noyment – Ecor	iomic Cens	sus 2005	I			
	-0.184	(0.128)	0.559	-0.188	(0.126)	0.559	84,665
Total Employment							
Informal Employment	-0.199	(0.128)	0.564	-0.202	(0.127)	0.564	84,647
A2: Firm-level Employment (log)		/·			/		
All Firms	-0.0979	(0.0679)	0.023	-0.111*	(0.0661)	0.023	2,716,904
Informal Firms	-0.0980	(0.0627)	0.025	-0.110*	(0.0615)	0.025	2,704,032
Panel B: RSVY Impact on Mic	roenterprises – l	NSS (Sche	dule 2.2) 2	 005-06			
Employment (log)	-0.111	(0.108)	0.393	-0.0399	(0.107)	0.395	2,854
Employment (count)	-0.320	(0.357)	0.345	-0.178	(0.370)	0.346	2.854
Revenue	-0.803***	(0.254)	0.542	-0.843***	(0.282)	0.542	2,854
revenue	0.000	(0.201)	0.012	0.010	(0.202)	0.012	2,00
Panel C: RSVY Impact on Hou	sehold Welfare	– NSS (Sc	hedule) 2	2005-06			
Wage	-0.108	(0.104)	0.382	-0.174	(0.136)	0.383	1,880
Days worked (last 7 days) (log)	-0.0801	(0.0563)	0.057	-0.0821**	(0.0330)	0.062	8,053
MHCE (log)	0.203	(0.153)	0.307	0.170	(0.154)	0.307	2,172
Panel D: Extensive Margin – R		i Firm Esta	ablishment				
Village level – Firm Quantity (log)							
All Firms	-0.152	(0.114)	0.587	-0.154	(0.113)	0.587	84,665
Informal Firms	-0.152	(0.114)	0.587	-0.155	(0.113)	0.587	84,647
Panel E: Microenterprises – Evi	dence on Impac	t Channel	s	l			
Power Cut (%)	-0.00224	(0.133)	0.323	0.0880	(0.123)	0.326	2,854
No Access to Materials (%)	0.462	(0.330)	0.361	0.350	(0.362)	0.362	2,213
140 / 100035 10 11131011813 (70)	0.402	(0.550)	5.501	0.550	(0.502)	0.502	2,210

CONCLUSION

- We find direct economic impacts of RSVY, an infrastructure development policy, on microenterprises' performance in India's backward regions
- We find improvement in infrastructure conditions (both rural electrification and connectivity) following policy introduction, which in turn likely relaxed firm's production constraints
- Results indicate that microenterprises those among the intended targets of many anti-poverty programs - could benefit, as long as the policies are implemented effectively

THANK YOU

Thank you!