Climate Change and Hydropower in Africa

Impacts, Mitigation and Adaptation

Yohannes Gebretsadik

WIDER Development Conference

Helsinki, 15 September 2018

Hydropower resource in Africa

Operating 35,000 MW

Under construction 17,000 MW

Planned 77,375 MW

Technical Potential 1,800 TWh/year

Total Hydropower Capacity Growth

Hydropower and Climate Change

- Impacts on precipitation & temperature
 - -> Change in hydrology
 - -> Change in Hydropower Generation
- Expected to play an increasing role in climate change adaptation
 - Hydropower : A renewable energy source
 - Climate adaptation services: Offer flood management and drought protection
 - Clean Battery: Energy storage and dynamic capacity to balance grids

Impact assessment

Water Models

- Hydrologic model
- Crop Model
- Water resources systems model

Hybrid Frequency distribution (HFDs) (Schlosser et al. 2011)

- Two emission scenarios
 - Unconstrained emission (UCE)
 - Level 1 Stabilization (L1S)

Climate Change impacts on Hydropower: Zambezi

Botswana Malawi Namibia Mozambique Tanzania Zambia Zimbabwe

Climate Change impacts on Hydropower: Zambezi

Comparison of Energy generation average for the period of 2045-2050s

Unconstrained Emission scenarios no policy action is taken to limit greenhouse

Level 1 Stabilization scenario Concentration at 560 ppm CO2

Climate Change impacts on Hydropower: Nile

Climate Change impacts on Hydropower: Nile

Percent change of Hydropower generation from reference case average over the years 2045-2050 for unconstrained emission (UC) and level 1 stabilization (L1S) climate change scenarios.

Climate Change impacts on Hydropower: Congo

Climate Change impacts on Hydropower: Congo

Comparison of energy generation average for the period of 2045-2050s

Unconstrained Emission scenarios no policy action is taken to limit greenhouse

Level 1 Stabilization scenario Concentration at 560 ppm CO2

Remarks

Climate Change impact on hydropower generation vary by location

... Change in Energy generation

... More risk in extreme values

Adaption

... to mitigate energy shortage

... to utilize opportunities

South Africa – Zambezi: More clean energy hydro-wind integration

- High Temporal and Spatial variation of Wind and solar resources
- Inherently intermittent
- Non-dispatchable source of Energy

- Regional Hydropower and Storage facility -> battery
- Wind Generating Capacity 23,000 MW
- HP Capacity 9,600 MW

Firm Generation of Combined Power

> South Africa

Power duration Curve for wind-hydro Operation

> HP facilities in Zambezi

Higher Reliability of meeting Power Target

The Case for Regional Power Pools

Regional power interconnection adaption to climate change?

Conclusion

- No Single direction of impacts for the continent Africa, varies by location
- Climate Changes combined with variability, and change in variability
- Consider adaptations in the context of risk
- Flexible design of infrastructures
- Synergy of renewable resources for adaption
- Regional interconnection for better resilience