The Role of Inequality in Poverty Measurement

Sabina Alkire Director, OPHI, Oxford

James E. Foster

Carr Professor, George Washington Research Associate, OPHI, Oxford

WIDER Development Conference Helsinki, September 13, 2018

Two forms of technologies for evaluating poverty

Unidimensional

- Single welfare variable eg, calories
- Variables can be meaningfully combined eg, expenditure

Multidimensional

- Variables cannot eg, sanitation conditions and years of education
- Want variables **disaggregated** for policy eg food and nonfood consumption

Demand for multidimensional tools 貸

International organizations, countries

Literature has many measures

Anand and Sen (1997), Tsui (2002), Atkinson (2003), Bourguignon and Chakravarty (2003), Deutsch and Silber (2005), Chakravarty and Silber (2008), Maasoumi and Lugo (2008)

Problems

Inapplicable to **ordinal** variables

Found in multidimensional poverty

Or methods extreme

Union identification

Violates basic axioms

New methodology Alkire-Foster (2011) Adjusted headcount ratio M₀ or MPI Designed for ordinal variables Floor material Has intermediate identification Dual cutoff approach Satisfies key axioms

Key axioms

Ordinality

Can use with ordinal data

Dimensional Monotonicity

Reflects deprivations of poor

Subgroup Decomposability

Gauge contributions of population subgroups

Dimensional Breakdown

Gauge contribution of dimensions

See example

Chad

Critique

M₀ not sensitive to distribution among the poor Axioms?

Some only for cardinal

Others weak: \leq and not < . M₀ satisfies!

Questions addressed here

Formulate **strict** axiom?

Construct measures satisfying this and other key properties? Work in **practice**?

Paper Summary

1. Axioms

Ordinality, Dimensional Breakdown and Dimensional Transfer

2. **Class**

- M-Gamma M_0^{γ} for $\gamma \ge 0$ $M_0^0 = H$ headcount ratio $M_0^1 = M_0$ adjusted headcount ratio M_0^2 squared count measure
- 3. Impossibility

4. Resolution

Shapley Breakdown

Use M-Gamma like P-alpha

5. Application Cameroon

Review: Poverty Measurement

Traditional two step framework of **Sen** (1976) **Identification** Step "Who is poor?" Targeting

Aggregation Step "How much poverty?"

Evaluation and monitoring

Unidimensional Poverty Measurement

Identification step

Typically uses **poverty line**

Poor if strictly below cutoff

Example: Distribution x = (7,3,4,8) poverty line $\pi = 5$ Who is poor?

Aggregation Step:

Typically uses poverty measure

Formula aggregates data into poverty level

Unidimensional Poverty Measurement

FGT or P-alpha class Incomes x = (7, 1, 4, 8)**Poverty line** $\pi = 5$ **Deprivation vector** $g^0 = (0,1,1,0)$ Headcount ratio $P_0(x; \pi) = H = \mu(g^0) = 2/4$ Normalized gap vector $g^1 = (0, 4/5, 1/5, 0)$ **Poverty gap** $P_{1}(x; \pi) = HI = \mu(g^{1}) = 5/20$ Squared gap vector $g^2 = (0, 16/25, 1/25, 0)$ **FGT Measure** $P_2(x; \pi) = \mu(g^2) = 17/100$

Note: All based on normalized gap $\frac{\pi - x_i}{\pi}$ raised to power $\alpha \ge 0$

Alkire and Foster (2011)

Generalized FGT to multidimensional case

Dual cutoff identification

Deprivation cutoffs $z_1, ..., z_d$ within dimensions Poverty cutoff k across dimensions

Concept of poverty

A person is poor if **multiply deprived** enough

Consistent with

Cardinal and ordinal data

Union, Intersection, and indermediate identification

Example will clarify

Achievement matrix with equally valued dimensions

Dimensions $y = \begin{bmatrix} 13.1 & 14 & 4 & 1 \\ 15.2 & 7 & 5 & 0 \\ 12.5 & 10 & 1 & 0 \\ 20 & 11 & 3 & 1 \end{bmatrix}$ $z = (13 \quad 12 \quad 3 \quad 1)$ Cutoffs

Deprivation Matrix

Deprivation Score c_i

$$g^{0} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \qquad \begin{array}{c} 0/4 \\ 2/4 \\ 4/4 \\ 1/4 \end{array}$$

Deprivation Matrix

Deprivation Score c_i

	0	0	0	0	0/4
~0	0	1	0	1	<u>2/4</u>
g =	1	1	1	1	<u>4/4</u>
	0	1	0	0	1/4

Identification: Who is poor?

If poverty cutoff is k = 2/4, middle two persons are poor

Censored Deprivation Matrix

Censored Deprivation Score c_i(k)

	0	0	0	0	0/4
$\alpha^0(\mathbf{k}) =$	0	1	0	1	<u>2/4</u>
g (k) =	1	1	1	1	<u>4/4</u>
	0	0	0	0	0/4

Why censor? To focus on the poor, must ignore the deprivations of nonpoor

Aggregation: Adjusted Headcount Measure $M_0 = \mu(g^0(k)) = \mu(c(k)) = 3/8$ $c_i(k)$

	0	0	0	0	0/4
$g^{0}(k) =$	0	1	0	1	<u>2/4</u>
	1	1	1	1	<u>4/4</u>
	0	0	0	0	0/4

M₀ = HA where
H = multidimensional headcount ratio = ½
"incidence"
A = average deprivation share among poor = 3/4

"intensity"

Note: Easily generalized to different weights summing to 1

Adjusted Headcount Ratio

Properties

Invariance Properties: Ordinality, Symmetry, Replication Invariance, Deprivation Focus, Poverty Focus
Dominance Properties: Weak Monotonicity, Dimensional Monotonicity, Weak Rearrangement, Weak Transfer
Subgroup Properties: Subgroup Consistency, Subgroup Decomposability, Dimensional Breakdown
Digression

Definitions of Ordinality and Dimensional Breakdown

Ordinality

Definition An *equivalent representation* rescales all variables and deprivation cutoffs.

- **Ordinality** An equivalent representation leaves poverty unchanged.
- Eg Change scale on self reported health from 1,2,3,4,5 to 2,3,5,7,9, and poverty level should be unchanged Note

Measure violates if relies on scale or normalized gaps M_0 satisfies

Dimensional Breakdown

Dimensional Breakdown after identification has taken place and the poverty status of each person has been fixed, multidimensional poverty can be expressed as a weighted sum of dimensional components.

Note

Component function for j depends only on dimension j data Breakdown formula for M_{0}

 $M_0 = \Sigma_j w_j H_j$ or weighted average of censored headcount ratios Example

Dimensional Breakdown – Cameroon MPI

Indicator	Censored Headcount Ratio <i>H_j</i>	Dimensional Breakdown <i>w_jH_j</i>	Relative Contribution w _j H _j /M ₀	
Years of Schooling	16.7	2.8	11.2%	
School Attendance	18.4	3.1	12.4%	
Child Mortality	27.4	4.6	18.4%	
Nutrition	18.3	3.1	12.3%	
Electricity	37.3	2.1	8.4%	
Sanitation	34.7	1.9	7.8%	
Water	28.9	1.6	6.5%	
Flooring	34.5	1.9	7.7%	
Fuel	45.5	2.5	10.2%	
Assets	23	1.3	5.2%	
		24.8	100.0%	

New Property

Recall property in Alkire-Foster (2011)

Dimensional Monotonicity Multidimensional poverty should rise whenever a poor person becomes deprived in an additional dimension

New property

- **Dimensional Transfer** Multidimensional poverty should fall as a result of a dimensional rearrangement among the poor
- A dimensional rearrangement among the poor An associationdecreasing rearrangement among the poor (in achievements) that is simultaneously an association-decreasing rearrangement in deprivations.

New Property

Example with z = (13,12,3,1)

Achievements

Deprivations

 $\begin{bmatrix} 12 & \mathbf{13} & 2 & 1 \\ 10 & \mathbf{7} & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 12 & \mathbf{7} & 2 & 1 \\ 10 & \mathbf{13} & 1 & 0 \end{bmatrix} \qquad \begin{bmatrix} 1 & \mathbf{0} & 1 & 0 \\ 1 & \mathbf{1} & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & \mathbf{1} & 1 & 0 \\ 1 & \mathbf{0} & 1 & 1 \end{bmatrix}$

Dominance No dominance Dominance No dominance Dimensional Transfer implies poverty must fall Note: Adjusted Headcount M₀ Just *violates* Dimensional Transfer Same average deprivation score Question: Are there measures satisfying DT?

M-Gamma Class M_0^{γ}

Identification: Dual cutoff

Aggregation:

$$M_0^{\gamma} = \mu(c^{\gamma}(k)) \text{ for } \gamma \ge 0$$

where $c_i^{\gamma}(k)$ is the censored deprivation score for person i raised to the γ power

Note: Based on "normalized attainment gap"

$$c_i^{\gamma}(\mathbf{k}) = \left(\frac{d-a_i}{d}\right)^{\gamma} \text{ for poor i}$$
$$c_i^{\gamma}(k) = 0 \text{ for nonpoor i}$$
where a_i is person i's attainment score

M-Gamma Class M_0^{γ}

Main measures

 $\gamma = 0$ headcount ratio $M_0^0 = H$ $\gamma = 1$ adjusted headcount ratio $M_0^1 = M_0$ $\gamma = 2$ squared count measure M_0^2 Note: Multidimensional analog to P-alpha

Dimensional Transfer satisfied for $\gamma > 1$ But Dimensional Breakdown **violated** for $\gamma > 1$ *****

Impossibility

Recall

Dimensional Breakdown: M can be expressed as a weighted average of component functions (after identification)

Why does M_0^2 violate?

Marginal impact of each dimension depends on **all** dimensions Question: Any other measures satisfy **both**?

Proposition There is **no** symmetric multidimensional measure satisfying both Dimensional Breakdown and Dimensional Transfer

Proof

Follows Pattanaik et al (2012)

Idea: DT requires fall in poverty; DB requires unchanged

Impossibility

Importance of Dimensional Breakdown

Coordination of Ministries

Coordinated dashboard of censored headcount ratios

Governance

Stay the course in bad financial times

Policy Analysis

Composition of poverty across groups, space, and time

Conclusion

Easy to construct measure satisfying Dimensional Transfer But at a **cost**: lose Dimensional Breakdown

Resolution?

1. Use multiple measures?

M-gamma class analogous to P-alpha class \checkmark

- 2. Relax Dimensional Transfer?
 - Already weak 🗱
- 3. Relax Dimensional Breakdown?

Already weak 🗮

Datt (2017) suggests Shapley methods

Shapley Breakdown

Shapley Value

- Finds contributions of parts to whole
- Especially useful for nonlinear functions: M_0^{γ} for $\gamma \neq 1$
- Example: One person, 10 indicators and union ident.
 - Poverty is censored deprivation score to γ power: $(c_i(k))^{\gamma}$
 - If not poor, then total and parts are zero
 - If poor and not deprived in j, then j has zero contribution
 - If poor and deprived in j, then the marginal impact of j depends on which dimensional indicator goes first, second, third...
- Shapley: average marginal product across all permutations Tedious to calculate
 - No intuitive link for policy
 - Makes no sense for hierarchical indicators

Shapley Breakdown

Example: Pat

Shapley Breakdown

Example: Jo

Shapley Breakdown Breaks Down

Inconsistency due to hierarchical variables

But ok for $\gamma = 2$

Results

Definition

- Consider set of people **poor** and **deprived** in j
- Censored intensity A_j = average intensity or breadth of poverty in this group

Recall

- Censored headcount ratio H_j = incidence of this group in overall population
- **Theorem** The Shapley breakdown for M_0^2 has a closed form solution. Each component is obtained by multiplying each component of the dimensional breakdown of M_0 by A_j .

Dimensional and Shapley Breakdown – Cameroon

Table V: Breakdowns of M_0^1 and M_0^2

	Censored Headcount Ratio	Dim Breakdown	Censored Intensity	Censored Adjusted Headcount	Shapley Breakdown	Relative Contribution	Relative Contribution	Percentag e Point Diff
Indicator	H_{j}	$w_j H_j$	Aj	M_{0j}	$w_j M_{0j}$	$w_j H_j / M_0^1$	$w_j M_{0j}/M_0^2$	Δ
Schooling	16.7	2.8	66.2	11.1	1.8	11.2%	12.5%	1.3
Attendance	18.4	3.1	66.1	12.2	2.0	12.4%	13.8%	1.4
Child Mortality	27.4	4.6	57.4	15.7	2.6	18.4%	17.8%	-0.6
Nutrition	18.3	3.1	63.9	11.7	1.9	12.3%	13.3%	1.0
Electricity	37.3	2.1	56.4	21.0	1.2	8.4%	7.9%	-0.4
Sanitation	34.7	1.9	53.9	18.7	1.0	7.8%	7.1%	-0.7
Water	28.9	1.6	56.1	16.2	0.9	6.5%	6.1%	-0.4
Flooring	34.5	1.9	56.4	19.5	1.1	7.7%	7.4%	-0.4
Fuel	45.5	2.5	54	24.6	1.4	10.2%	9.3%	-0.9
Assets	23	1.3	57	13.1	0.7	5.2%	5.0%	-0.2
		$M_0^1 = 24.8$			$M_0^2 = 14.7$			

Note similarity of relative contributions

Conclusion

- Derived closed form solution for Shapley breakdown of squared count measure
- Should use the three main M-gamma measures in tandem analogous to P-alpha measures
 - M_0 as the central measures for analysis satisfying Dimensional Breakdown and just violating Dimensional Transfer
 - H as a key partial measure of incidence of poverty
 - M_0^2 (and its Shapley breakdown) to evaluate the effects of inequality among the poor

Thank you!