A Structural Model of Informality with Constrained Entrepreneurship

Pierre Nguimkeu Georgia State University - USA (nnguimkeu@gsu.edu)

UNU-WIDER Conference on "Public Economics for Development"

Maputo, July 6, 2017

Context

- Entrepreneurship -> crucial ingredient in promoting and sustaining economic growth: potential for creating jobs, delivering innovation and raising productivity.
- Issue with developing countries -> existence of a large informal sector (60-90% of workforce)
- Formal enterprises -> higher growth prospects, higher productivity and income potential, generate tax revenues
- Informal enterprises -> generally low-scale, largely untaxed (shortfalls in government revenues).
 -> Important avenue for job creation, incubator for business potential; stepping stone for accessibility to the formal economy (ILO 2002, Cano-Urbina 2015).

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

Examples of Informal Activities

Informal entrepreneurs: small and medium size enterprises.

Examples of Informal Activities

Subsistence activities: Street vending; call boxes

Examples of Informal Activities

Subsistence activities: backyard manufacturing - unpaid family work

Research Question

- How do individual and institutional attributes drive entrepreneurial choice and the formation of informal versus formal firms in developing countries?
- What policies can promote entrepreneurship and increase the share of formal firms relative to informal firms?
- What are then the consequences in terms of output and productivity?

イロト イポト イヨト イヨト 三日

Overview of Methodology

- I develop a theoretical model of formal and informal entrepreneurship under partial equilibrium, which is then estimated by GMM using data from Cameroon.
- Decision-making process depends on both individual characteristics (skills and initial wealth endowment) and institutional factors (entry costs, taxation, enforcement and degree of financial frictions).
- The estimated model is then used in counterfactual policy simulations to quantify the impact of several policies (registration and tax reforms, increased enforcement, etc.), on informality and aggregate income.

Preview of Findings

- Evidence of a non-monotonic, U-shaped, relationship between entrepreneurs' education and their decision to formalize.
- Evidence that initial wealth and average education drive informal entrepreneurship while higher education and parent's entrepreneurial status determine formal entrepreneurship.
- Counterfactual evidence that while registration and tax reforms generate substantial enterprise creation, increased formalization and aggregate income gains, a pure enforcement policy against informality has an overall perverse effect.

イロト イロト イヨト イヨト 三日

Outline

- Model Description
- O Structural Estimation and Testing
- Ounterfactual Simulations
- Conclusion

Model Description

Framework

- Three occupations: Wage-work, Formal Entrepreneurship, Informal Entrepreneurship.
- Agents differ with their initial wealth endowment z, and their entrepreneurial skills θ distributed with CDF $G(\theta)$.
- Wageworkers receive a fixed income w > 0.
- Entrepreneurs produce goods according to a Cobb-Douglas production technology given by

$$\mathbf{y} = \theta \mathbf{k}^{\alpha} \mathbf{I}^{\beta} \epsilon \tag{1}$$

where $\alpha, \beta \in (0, 1)$, and $\gamma = \alpha + \beta < 1$.

Formal Entrepreneurship

• Taxes and registration cost. The formal entrepreneur's problem:

$$\pi^{\mathsf{F}}(\theta) = \max_{k \ge 0, l \ge 0} \left\{ (1 - \tau) \left[\theta k^{\alpha} l^{\beta} - wl - rk \right] - rc \right\}$$

where:

- au is the tax rate, r is the interest rate
- c is the registration cost (sunk cost). Includes fees, bribes, administrative delays, etc.
- The formal entrepreneur's expected payoff is

$$\pi^{F}(\theta) = (1-\tau)(1-\gamma)\theta^{\frac{1}{1-\gamma}}\left(\frac{\alpha}{r}\right)^{\frac{\alpha}{1-\gamma}}\left(\frac{\beta}{w}\right)^{\frac{\beta}{1-\gamma}} - rc$$

12/40

イロト イポト イヨト イヨト 三日

Informal Entrepreneurship

- Low access to credit. Probability p of getting caught.
- Individuals can borrow only up to λz , endogeneizing
- The informal entrepreneur's expected payoff is

$$\pi'(z,\theta) = \max_{0 \le k \le \lambda z, l \ge 0} (1-p) \left[\theta k^{\alpha} l^{\beta} - wl - rk \right]$$

where

- $\lambda \in [1,\infty)$ is the magnitude of the borrowing constraint.

Informal Entrepreneurship

• Informal Entrepreneur's payoff are given by:

$$\pi^{I}(z,\theta) = \begin{cases} (1-p)(1-\gamma)\theta^{\frac{1}{1-\gamma}} \left(\frac{\alpha}{r}\right)^{\frac{\alpha}{1-\gamma}} \left(\frac{\beta}{w}\right)^{\frac{\beta}{1-\gamma}}, & \theta \leq \theta_{c}(z) \\ \\ (1-p)\left[(1-\beta)\theta^{\frac{1}{1-\beta}} \left(\frac{\beta}{w}\right)^{\frac{\beta}{1-\beta}} (\lambda z)^{\frac{\alpha}{1-\beta}} - \lambda rz\right] & o/w. \end{cases}$$

$$(2)$$

 \rightarrow unconstrained and constrained informal entrepreneurs.

Model Implications - Occupational choice

- The expected earning of an agent with (z, θ) is given by $\pi(z, \theta) = \max \left\{ w, \pi'(z, \theta), \pi^F(z, \theta) \right\}$
- The behaviour of payoff functions in given in Figure 1.

Figure: Characterization of Payoff Functions

Model Implications

Proposition

Consider an agent with characteristics θ and z. There exist three critical ability thresholds $\theta_W(z)$, $\theta_c(z)$ and $\theta_F(z)$, with $\theta_W(z)$, $\theta_c(z) < \theta_F(z)$, such that

- If $\theta < \theta_W(z)$ the agent chooses to be a wageworker
- If $\theta_W(z) \le \theta < \theta_F(z)$ the agent is an informal entrepreneur
- **3** If $\theta \ge \theta_F(z)$ the agent is formal entrepreneur.

The critical thresholds $\theta_W(z)$ and $\theta_F(z)$ are solutions to the equations $\pi'(z, \theta) = w$ and $\pi'(z, \theta) = \pi^F(z, \theta)$, respectively.

Model Implications

• The nature of the selection into occupations is depicted below.

Figure: Nature of the Selection into Occupations

Model Implications

• The nature of the transition between occupations is depicted below.

Data, Estimation and Testing

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 単 - の�@

Data

- The 2005 National Survey of Employment and Informal Sector (SEIS).
- Administered by the National Institute of Statistics (NIS) with the partnership of The World Bank Group.
- Covered households in the 10 Cameroon regions distributed in both urban and rural areas.
- A cross-section of 6112 active households heads : 1.1% Formal entrepreneurs, 6.9% Informal entrepreneurs, 92.0% Workers.

Data – A Nationwide Survey

Descriptive statistics

	Occupations			
Characteristics	Formal	Informal	Wageworkers	
	Entrepreneurs	Entrepreneurs	/Subsisters	
Num. of obs.	65	424	5 623	
% of sample	1.1%	6.9%	92.0%	
% of women	12.3%	37.3%	41.7%	
Av. household size	6.0	6.1	5.9	
Av. age of head	42.4	37.0	36.1	
Years of schooling				
0-6 years	11.1%	41.3%	48.4%	
7-12 years	31.5%	48.6%	36.2%	
13+ years	57.4%	10.1%	15.4%	
Parent Entrep.	41.5%	13.6%	3.5%	
Av. monthly income*	353.3	75.3	77.2	
Av. wealth *	21 792.9	4 569.7	$3\ 007.4$	

Table: Household Characteristics by Occupations

*In thousands of local currency (CFA); 1,000 CFA \sim \$2 US (in 2005)

Descriptive statistics

Figure: Distribution of Education and Earnings by Occupation

Descriptive statistics

Figure: Distribution of Log Initial Wealth by Occupation

24/40

イロト スポト メヨト メヨト

Overview Model Estimation Policy Simulations Conclusion

Structura Estimation - Distribution of skills

• Skills are unobservable. Assume (see Paulson et al 2006):

$$\ln \theta = \delta_0 + \delta_1 s + \delta_2 P + \epsilon \tag{3}$$

-s is the log of years of education, - P is a dummy for parent entrepreneurial status. - ϵ is assumed $\epsilon|_{z,S,P} \sim IID(0, \sigma^2)$.

• Assume loglinear specification for registration costs:

$$c(z) = c_0 \exp(-c_1 z)$$

• Structural parameters: $\psi = [w, \delta_0, \delta_1, \delta_2, \alpha, \beta, \sigma, \lambda, c_1]$

イロト イポト イヨト イヨト 三日

Structural Estimation - Model predicted moments

- Occupational statuses are given by indicators (W, I, F).
- The probability and income of Formal Entrepreneurship is

 $\Pr[F = 1|X] = \Pr[\theta \ge \theta_F(z)] = H_F(\psi, X), \quad E[y|F = 1] = E[\pi^F(z, \theta)]$

- The probability and income of non-entrepreneurship is $\Pr[W = 1|X] = \Pr[\ln \theta \le \ln \theta_W(z)] = H_W(\psi, X), \quad E[y|F = 1] = w$
- The probability and income of informal entrepreneurship is $\Pr[I = 1|X] = 1 - H_W(\psi, X) - H_F(\psi, X), \quad E[y|W = 1] = E[\pi^I(z, \theta)]$

Structural Estimation - Model moments and sample analogs

	Description	Model	Sample
		$M_l(X_i, \psi)$	m_l
1.	Prob. of formal entrep	$\frac{1}{n}\sum_{i=1}^{n}\Pr[F_i=1 X_i]$	$\frac{1}{n}\sum_{i=1}^{n}F_{i}$
2.	Prob. of formal entrep, $z < z_m {}^{\ast}$	$\frac{\sum_{i=1}^{n} \Pr[F_i = 1 X_i] 1[z_i < z_m]}{\sum_{i=1}^{n} 1[z_i < z_m]}$	$\frac{\sum_{i=1}^{n} F_i 1[z_i < z_m]}{\sum_{i=1}^{n} 1[z_i < z_m]}$
3.	Prob. of informal entrep	$\frac{1}{n}\sum_{i=1}^{n}\Pr[I_i=1 X_i]$	$\frac{1}{n}\sum_{i=1}^{n}I_{i}$
4.	Prob. of informal entrep, $z < z_m$	$\frac{\sum_{i=1}^{n} \Pr[I_i = 1 X_i] 1[z_i < z_m]}{\sum_{i=1}^{n} 1[z_i < z_m]}$	$\frac{\sum_{i=1}^{n} I_i 1[z_i < z_m]}{\sum_{i=1}^{n} 1[z_i < z_m]}$
5.	Income of formal entrep	$\frac{\sum_{i=1}^{n} \mathbf{E}[y_i F_i = 1, X_i] \Pr[F_i = 1 X_i]}{\sum_{i=1}^{n} \Pr[F_i = 1 X_i]}$	$\frac{\sum_{i=1}^{n} y_i F_i}{\sum_{i=1}^{n} F_i}$
6.	Income of formal entrep, $z < z_m$	$\frac{\sum_{i=1}^{n} \mathbf{E}[y_i F_i = 1] \Pr[F_i = 1 X_i] 1[z_i < z_m]}{\sum_{i=1}^{n} \Pr[F_i = 1 X_i] 1[z_i < z_m]}$	$\frac{\sum_{i=1}^{n} y_i F_i 1[z_i < z_m]}{\sum_{i=1}^{n} F_i 1[z_i < z_m]}$
7.	Income of informal entrep	$\frac{\sum_{i=1}^{n} \mathbf{E}[y_i I_i = 1, X_i] \Pr[I_i = 1 X_i]}{\sum_{i=1}^{n} \Pr[I_i = 1 X_i]}$	$\frac{\sum_{i=1}^{n} y_i I_i}{\sum_{i=1}^{n} I_i}$
8.	Income of informal entrep, $z < z_m$	$\frac{\sum_{i=1}^{n} \mathbf{E}[y_i I_i = 1] \Pr[I_i = 1 X_i] 1[z_i < z_m]}{\sum_{i=1}^{n} \Pr[I_i = 1 X_i] 1[z_i < z_m]}$	$\frac{\sum_{i=1}^{n} y_i I_i 1[z_i < z_m]}{\sum_{i=1}^{n} I_i 1[z_i < z_m]}$
9.	Income of non-entrep	$\frac{\sum_{i=1}^{n} \mathbf{E}[y_i W_i = 1, X_i] \Pr[W_i = 1 X_i]}{\sum_{i=1}^{n} \Pr[W_i = 1 X_i]}$	$\frac{\sum_{i=1}^{n} y_i W_i}{\sum_{i=1}^{n} W_i}$
10.	Income of formal entrep, ${\cal P}=0$	$\frac{\sum_{i=1}^{n} \mathbf{E}[y_i F_i = 1, X_i] \Pr[F_i = 1 X_i](1 - P_i)}{\sum_{i=1}^{n} \Pr[F_i = 1 X_i](1 - P_i)}$	$\frac{\sum_{i=1}^{n} y_i F_i(1-P_i)}{\sum_{i=1}^{n} F_i(1-P_i) 27 / 40}$

Structural Estimation-Institutional parameters

Table: Characteristics of the Institutional Environment

Indicator	Starting	Indicator	Paying	
	a Business		Taxes	
Number of procedures	12	Number of payments/year	44	
Number of days	37	Number of days	90	
Registration fees (% GNI/capita)	182.5	Total tax rate (% profit)	48.9	
Min. capital (% GNI/capita)	232.0			
GNI per capita = $640 \approx CFA 320,000$		Source: Doing Business in 2005		

- Tax rate on firm profits: $\tau = 49\%$
- Entry cost : $c_0 = \text{Reg. fees} + \text{Number of days} \times \text{Mean daily earnings} = 1400
- Enforcement:

 $p = \frac{\# \text{ tax inspections}}{\# \text{ firms}} \times \text{Degree of Integrity of tax inspectors} = 0.78\%$

Structura Estimation-GMM estimation results

Table: Structural GMM Estimates of the Model

Parameter	Name	Estimate	Std. Error	
Wage income	w	70.303	117.1	
Log Ability Parameters				
Constant	δ_0	-2.8372	0.0118	
Education	δ_1	0.4013	0.0210	
Parents	δ_2	0.0241	0.0079	
Std. Deviation	σ	2.4610	0.0380	
Technology and Constraints				
Capital share	α	0.2201	0.059	
Labor share	β	0.4502	0.092	
Borrowing constraint	λ	11.417	3.410	
Cost parameter	c_1	0.0007	0.0004	
J-statistic		3.12		
Number of Obs.		6112		

Standard errors are calculated using bootstrap samples $< \square \succ < \square \succ = \square = \square$

Reduced-Form Results

Variable	Info	rmal	Work	er vs.	Work	ær vs.
	vs. F	ormal	Formal		Informal	
	(1)	(2)	(1)	(2)	(1)	(2)
Intercept	-3.853*** (0.483)	-3.129*** (0.564)	-3.555*** (0.249)	-3.571*** (0.354)	-1.529*** (0.078)	1.789*** (0.094)
Education	0.149^{***} (0.029)	-0.231* (0.016)	0.046^{***} (0.015)	$\begin{array}{c} 0.050 \\ (0.056) \end{array}$	-0.006 (0.005)	0.087 (0.079)
$Education^2/100$	-	0.863** (0.426)	-	-0.017 (0.256)	-	-0.616 (0.412)
Parent	1.770*** (0.271)	1.765^{***} (0.269)	0.435*** (0.128)	0.434*** (0.128)	0.713* (0.411)	0.693^{*} (0.411)
Wealth	0.302^{***} (0.060)	0.288*** (0.061)	$\begin{array}{c} 0.310^{***} \\ (0.033) \end{array}$	0.002*** (0.000)	0.090*** (0.026)	0.113*** (0.027)
$Wealth^2$	-	0.288*** (0.061)	-	0.003^{***} (0.000)	-	0.113*** (0.027)
Experience	0.040^{***} (0.015)	0.039^{***} (0.015)	-0.003 (0.008)	-0.002 (0.007)	$\begin{array}{c} 0.000\\ (0.001) \end{array}$	0.002 (0.003)
Female	-0.256 (0.275)	-0.213 (0.273)	-0.308* (0.169)	-0.308* (0.169)	-0.153*** (0.053)	-0.169^{***} (0.053)
Number of Obs. AIC	489 194.43	489 192.54	5688 506.37	5688 508.37	6047 3005.3	6047 2974.5

Table: Probit Estimates of Choice Between Occupations

) Q (

Counterfactual Policy Analysis

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ■ のへの

Policy Simulation

Quantify the impact of various policies on formality, entrepreneurship and aggregate earning.

- Impact of Registration Reforms.
 (e.g. Bruhn 2011, Kaplan et al. 2011)
- Impact of Tax Reforms. (e.g. Monteiro and Assunção 2012, Fajnzylber et al. 2011).
- Impact of Law Enforcement (e.g. Almeda & Carneiro 2012)

Simulations - Impact of Registration Reforms

Assume b decrements in entry costs to the formal sector. Then

$$c' = c - b, \qquad 0 \le b < c,$$

Figure: Impact of a Registration Reform

Simulations - Impact of Tax Reforms

Assume reductions in tax rates of magnitude d, such that

$$\tau' = \tau - d, \qquad 0 \le d < \tau.$$

Figure: Impact of a Tax Reduction Policy

Simulations - Impact of Law Enforcement

The effect of increased law enforcement is quantified as

$$p'=p+e, \qquad 0\leq e<1-p$$

Conclusion

- Estimated a structural model of occupational choice where heterogenous agents choose between formal entrepreneurship and informal entrepreneurship and non-entrepreneurial work.
- The main results are:

 \rightarrow Entrepreneurs with low productivity choose informality whereas the most productive ones choose the formal sector.

 \rightarrow The decision to formalize is however U-shaped in skills.

 \rightarrow High registration costs act as an implicit exclusion mechanism to enterprises with low productivity.

Conclusion

• Counterfactual simulations results with Cameroon data show that:

 \rightarrow Reduced entry costs can induce more formal firms and more tax revenues net of the foregone costs.

 \rightarrow There exists an optimal tax rate, set at half of the current rate, that would induce twice as much formal enterprises and produce three-halves of the current tax revenues.

 \rightarrow In contrast, a law enforcement policy whose objective is to increase the probability of detection would have an overall perverse effect in terms of firms and job losses.

THANK YOU!!

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

A Structural Model of Informality with Constrained Entrepreneurship

Pierre Nguimkeu Georgia State University - USA (nnguimkeu@gsu.edu)

UNU-WIDER Conference on "Public Economics for Development"

Maputo, July 6, 2017

Endogeneizing credit constraints

- Expected payoff for defaulters is $f(k, l) \phi(1 + \nu)z$, where
 - ϕ is the probability of being caught,
 - ν is the fraction of wealth forfeited.
- The incentive compatibility constraint is then $f(k, l) rk \ge f(k, l) \phi(1 + \nu)z$.
- So lenders only rent to households whose wealth satisfies, $z \ge \frac{r}{(1+\nu)\phi}k.$
- Equivalently, this means that the capital available to borrowers satisfies $k \leq \frac{\phi(1+\nu)}{r} z$. Back

イロト イポト イヨト イヨト 三日