INTRODUCTION	Background	Data & Identification	Results	Conclusion
0000	0000000	0000000000	000000	0

Household Responses to Food Subsidies: Evidence from India

Tara Kaul International Initiative for Impact Evaluation (3ie)

UNU-WIDER Public Economics for Development Conference Maputo June 2017

INTRODUCTION	Background	Data & Identification	Results	Conclusion
•••••	0000000	0000000000	000000	o

MOTIVATION

- Food subsidies are one of the most critical forms of assistance to the poor
 - Implemented via food stamps, in kind transfers, subsidized quotas or price subsidies
 - Previous literature: impact on nutrition generally small, even zero or negative
- Indian Public Distribution System
 - Nation-wide, used by \approx 45% of the population
 - Poor households receive a monthly quota of cereals (rice/wheat) at discounted prices set by the government
 - \blacktriangleright Supplementary program \implies infra-marginal households \implies works through income effect
 - ► On average: cereals contribute 73% of total caloric intake

RESEARCH QUESTIONS

- What is the impact of food subsidies on
 - ► cereal consumption?
 - caloric intake?
 - calories from different food groups?
- How does the marginal effect of the food subsidy compare with the expenditure elasticity of calories?
- Implementation issues:
 - What is the possible loss in caloric intake due to corruption in different states?

RESEARCH STRATEGY

- Use previously unexploited sources of variation in the value of the subsidy:
 - 1. State specific program rules
 - Across state variation: states set quotas independently
 - Within state variation: states may or may not index quota to family size
 - 2. Differences in local (district) market and PDS prices

- Within state variation, across time: PDS price set for the year, not linked to market prices \implies discount varies by local conditions

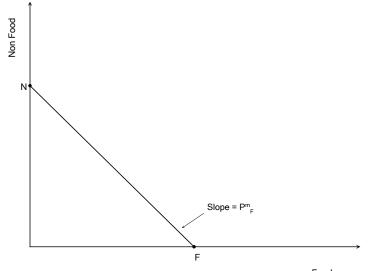
PREVIEW OF RESULTS

- Impact on nutrition
 - Positive and significant \uparrow in cereals and calories, $\epsilon_{kcal}^{sub} = 0.144$ - in contrast to earlier studies that find 0 or negative effects
 - \blacktriangleright Positive and significant \uparrow in calories from all food groups
- ▶ Effect is smaller than expenditure elasticity,
 e^{exp}_{kcal} = 0.4
 - presence of transaction costs, corruption
- Impact on calories almost 50% lower in states considered (Khera 2011) most corrupt

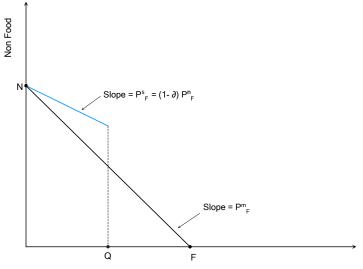
Introduction	Background	Data & Identification	Results	Conclusion
0000	••••••	000000000	000000	O

PUBLIC DISTRIBUTION SYSTEM IN INDIA

- ▶ One of the government's most significant anti-poverty programs: Food subsidy $\approx 1\%$ of GDP
- Central government procures food grains at the minimum support price set for the year
- Works alongside free market to distribute rice, wheat, sugar and kerosene at subsidized prices through 489,000 Fair Price Shops
- ► Post 1997: PDS became Targeted
 - Below the poverty line (BPL) households get fixed amount of food grains per month at 50% of the cost to the government
 - ► Targeted 65.2 million families by 2000
- ► Jointly run by the central and state governments
- Uniform subsidized price is maintained across districts within a state, rather than uniform subsidy value

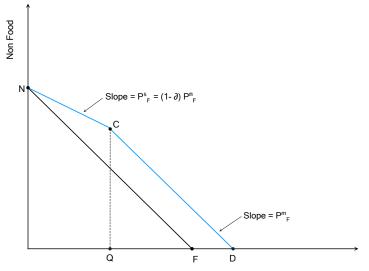

INTRODUCTION	Background	Data & Identification	Results	Conclusion
0000	000000	000000000	000000	0

FUNCTIONING AND REFORM

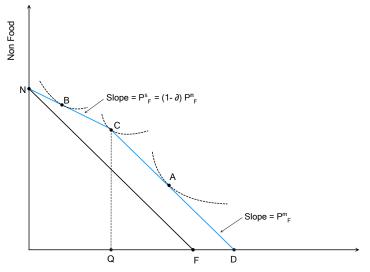

- Criticized for diversion/leakages and inefficiency: Government spends Rs 3.65 to transfer Re 1 to the poor
- Primary means of diversion: illegal sale in open market at some stage of the distribution chain
- ► Khera (2011) finds regional differences in corruption, 44% grains diverted on average in 2007-08

INTRODUCTION	Background	Data & Identification	Results	Conclusion
0000	00000	000000000	000000	0

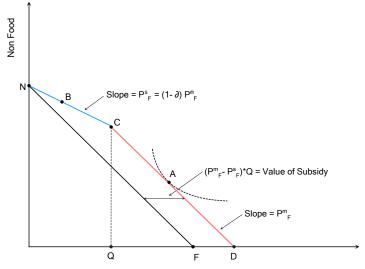
(CIN2010)



INTRODUCTION B	BACKGROUND	Data & Identification	Results	Conclusion
0000 0	000000	000000000	000000	0



INTRODUCTION	Background	Data & Identification	Results	Conclusion
0000	0000000	000000000	000000	0


INTRODUCTION	Background	Data & Identification	Results	Conclusion
0000	0000000	000000000	000000	0

Food

INTRODUCTION	Background	Data & Identification	Results	Conclusion
0000	000000	000000000	000000	0

CONCEPTUAL FRAMEWORK

0000 0000000 000000 00000 0	INTRODUCTION	Background	Data & Identification	Results	Conclusion
	0000	000000	00000000	000000	0

NSSO Socio-Economic Surveys

- Nationally representative, repeated cross sections (2002-2008)
 - ► Household expenditures (Value and Quantity)
 - Monthly : Over 150 food items, beverages etc Example
 - Yearly : Durable goods, medical expenditure, education expenditure, conveyance, rent etc
 - ► Household characteristics: age, education level, location, religion etc
 - Does not collect information on BPL status (exception: 2004-05 round)
- Sample for analysis
 - ▶ 8 rice consuming states (151 districts)
 - PDS users: Households that report purchase of rice from the PDS
 - Local prices calculated using quantity and value reported by PDS users in a district-season-year cell
 - ► Food purchases converted into calorie availability

IDENTIFICATION STRATEGY

- Variation in the per capita value of the subsidy
 - State quotas
 - District-season-year price differences
 - Household size
- Value of the subsidy calculated as

$$PerCapValSub_{ijswt} = (P_{jwt}^{mkt} - P_{jwt}^{sub}) * PerCapQuota_{is}$$

Where:

i = household, j = district, s = state, w = season, t = year

INTRODUCTION	Background	Data & Identification	Results	Conclusion
0000	000000	00000000	000000	0

VARIATION IN STATE QUOTAS

State	Rice (kg)	Wheat (kg)
Andhra Pradesh	4 per person (20 kg max/hh)	5 (at unsubsidized price)
Assam	20	0
Bihar	15	15
Chattisgarh	25	0
Gujarat	1 per person (3.5 kg max/hh)	1.5 per person (9 kg max/hh)
Haryana	10	25
Jharkhand	35	0
Karnataka	16	4
Kerela	8 per adult 4 per child (20 kg max/hh)	5 (at unsubsidized price)
Madhya Pradesh	6	17
Maharashtra	5	15
Meghalaya	2 per person	0
Orissa	16	0
Rajasthan	5	25
Uttar Pradesh	20	15
West Bengal	2 per person	2 per person

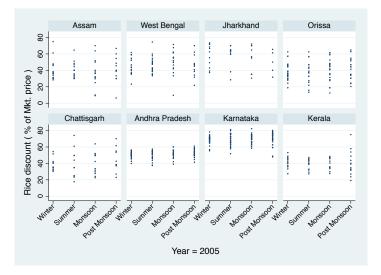
Sources: Planning Commission (2005), Khera (2011) &

"Simplifying the food security bill" at http://bit.ly/PMNFSB

INTRODUCTION	Background	Data & Identification	Results	Conclusion
0000	000000	00000000	000000	0

VARIATION IN RICE DISCOUNT

State	Mean (%)	Std. Dev	p10	p90	Ν
Winter (January-March)					
Karnataka	66.92	11.6	23.39	77.32	1239
Assam	41.46	10.59	20	56.45	233
Summer (April-May)					
Karnataka	66.86	11.63	35.56	78.18	791
Assam	41.78	11.11	6.17	54.17	163
Monsoon (June-September)					
Karnataka	58.22	15.45	24.38	75.07	1697
Assam	38.1	13.92	4.55	60	283
Post Monsoon (October-December)					
Karnataka	60.2	15.04	14.67	75	1335
Assam	39.44	13.41	17.65	59.13	230


Source: Calculations using 2002-2008 NSSO Socio-Economic Surveys.

Notes: 1. Discount calculated as (Market price - PDS price)/Market price*100.

2. Averages based on PDS and market prices reported by PDS users in the sample.

INTRODUCTION	Background	Data & Identification	Results	Conclusion
0000	0000000	000000000	000000	0

VARIATION IN RICE DISCOUNT FOR 2005

INTRODUCTION	Background	Data & Identification	Results	Conclusion
0000	0000000	000000000	000000	0

VARIATION IN VALUE OF THE RICE SUBSIDY

State	Mean (Rs)	Std. Dev	p10	p90	N
Winter (January -March)					
Karnataka	35.89	21.56	6.93	58.24	1239
Assam	23.52	11.11	8.64	38.67	233
Summer (April-May)					
Karnataka	37.93	25.26	8.32	63.76	791
Assam	26.56	14.4	3.86	43.42	163
Monsoon (June-September)					
Karnataka	32.62	20.37	6.63	55.37	1697
Assam	24.38	13.98	2.7	41.81	283
Post Monsoon (October-December)					
Karnataka	33.71	21.71	4.79	56.25	1335
Assam	26.12	18.65	7.2	41.63	230

Source: Calculations using 2002-2008 NSSO Socio-Economic Surveys.

Notes: 1. Value of subsidy calculated as Per Capita Quota*(Market price - PDS price).

2. Averages based on PDS and market prices reported by PDS users in the sample.

0000 000000 000000 00000 0	INTRODUCTION	Background	Data & Identification	Results	Conclusion
000000000000000000000000000000000000000	0000	000000	00000000000	000000	0

Descriptive Statistics

Sample:	Ful	l Sample	P	DS users
	Mean	(Std. Dev.)	Mean	(Std. Dev.)
Monthly expenditure per capita (Rs)	1011.0	(1085.3)	636.8	(393.4)
Daily calories per capita (kcal)	2334.2	(1300.9)	2190.9	(623.7)
Proportion spent on food	0.547	(0.142)	0.577	(0.116)
Size of the household	4.570	(2.382)	4.736	(1.891)
Number of children below 15	1.411	(1.428)	1.538	(1.339)
Proportion of women	0.515	(0.207)	0.512	(0.152)
Age of household head	46.58	(13.61)	45.38	(12.17)
Urban dummy	0.363	(0.481)	0.219	(0.414)
SC/ST/OBC	0.592	(0.491)	0.765	(0.424)
Observations	124228		22564	

Notes: 1. Rural Poverty line is Rs 497.6, Urban Poverty line is Rs 635.7 (Planning Commission, Government of India). 2. Average daily minimum calorie requirements are 2400 kcal for rural and 2100 kcal for urban areas. 3. All prices in 2005 Rupees (Rs 45.3 = 1 USD in 2005).

INTRODUCTION	Background	Data & Identification	Results	Conclusion
0000	000000	0000000000	000000	0

RICE PRICES AND QUANTITIES

	Mean	(Std. Dev.)
PDS rice price (Rs/kg)	5.271	(1.855)
Mkt rice price (Rs/kg)	10.80	(2.193)
PDS rice qty (kg)	18.64	(9.392)
Market rice qty (kg)	26.11	(20.24)
Food expenditure per capita (Rs)	400.5	(168.9)
Cereal expenditure per capita (Rs)	116.0	(43.85)
Rice subsidy per capita (Rs)	25.71	(11.90)
Rice proportion of food expenditure	0.260	(0.130)
Proportion of calories from rice	0.615	(0.175)
Proportion of calories from cereals	0.727	(0.0987)
Observations	22564	

EMPIRICAL SPECIFICATION

$$Y_{ijswt} = \alpha + \beta PerCapValSub_{ijswt} + \mathbf{X}_{ijswt}\gamma + \delta_j + \chi_w + \theta_{st} + \varepsilon_{ijswt}$$

Where: i = household, j = district, s = state, w = season, t = year & $PerCapValSub_{ijswt} = (P_{jwt}^{mkt} - P_{jwt}^{sub}) * PerCapQuota_{is}$

Controls

- Determinants of calories in X (Behrman & Deolalikar 1988)
 Education of household head and spouse, proportion of women, urban location, land holdings, age and squared age of household head
- Regional (district) and seasonal effects
- State*year effects
- Standard errors clustered at the district level

Introduction 0000	Background 0000000	Data & Identification	Results 000000	Conclusion O

Assumptions

- Conditional on controls, value of subsidy exogenous to unobservable factors affecting demand
 - perform falsification test on non PDS users Falsification
- Household size exogenous to state level program rules
 - use national average family size Size
- Prices unaffected by demand from any one household
 standard from perfect competition

Sources of measurement/specification error

- Calculation of local prices using unit values from expenditure survey
 - use median prices instead of average (robust to outliers)
- Independent effect of family size
 - use alternative scale to correct for family size
 - use household level outcomes and explicitly control for size

Introduction 0000	Background 0000000	Data & Identification 000000000	Results 000000	Conclusion o

Impact on Food consumption and Caloric Intake

- ↑ Rs 10 in subsidy value ⇒ ↑ 20.3 gram/day cereal consumption (60 kcal/day)
- \uparrow Rs 10 in subsidy value \Rightarrow \uparrow 126 kcal/day
- ► $\epsilon_{kcal}^{sub} = 0.144$
- Positive elasticity for all food groups: supports income effect hypothesis

INTRODUCTION	Background	Data & Identification	Results	Conclusion
0000	0000000	000000000	● 0 0000	0

IMPACT ON CEREAL CONSUMPTION

Dependent variable:	Cereal consumption (1)	Log cereal consumption (2)	Cereal consumption (3)
Rice subsidy per capita	2.030*** (0.158)		
Log rice subsidy per capita		0.123*** (0.00963)	
Rice quota per capita			-1.968 (4.442)
Market price* quota per capita			1.697*** (0.436)
PDS price* quota per capita			0.157 (0.463)
PDS price			-1.607 (2.849)
Market price			-6.131** (2.395)
Observations Adjusted R^2	22564 0.250	22564 0.270	22564 0.258

Standard errors in parentheses. * p < 0.10,** p < 0.05, *** p < 0.01

INTRODUCTIONBACKGROUNDDATA & IDENTIFICATIONResultsCONCLUSION000000000000000000000000000000

IMPACT ON CALORIC INTAKE

Caloric intake	Log caloric intake	Log o	aloric intak	e from food gr	oup
		Cereals	Lentils	Fruits & Veg	Meat
(1)	(2)	(3)	(4)	(5)	(6)
12.58***					
(1.116)					
	0.144***	0.123***	0.154***	0.234***	0.170***
	(0.0103)	(0.00963)	(0.0177)	(0.0160)	(0.0187)
22564	22564	22564	22118	22562	19833
0.124	0.166	0.270	0.215	0.441	0.426
	(1) 12.58*** (1.116) 22564	(1) (2) 12.58*** (1.116) 0.144*** (0.0103) 22564 22564	Cereals Cereals (1) (2) (3) 12.58*** (1.116) 0.144*** 0.10103) 0.00963) 22564 22564 22564	Cereals Lentils (1) (2) (3) (4) 12.58*** (1.116) 0.123*** 0.154*** (0.0103) (0.00963) (0.0177) 22564 22564 22564 22118	Cereals Lentils Fruits & Veg (1) (2) (3) (4) (5) 12.58***

Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01

INTRODUCTION	Background	Data & Identification	Results	Conclusion
0000	000000	000000000	00000	0

Comparison with Expenditure Elasticity

Dependent variable:	Log caloric intake		Log food e	×penditure
	(1)	(2)	(3)	(4)
Log monthly expenditure per capita	0.406*** (0.0103)	¢	0.751*** (0.00883)	
Log rice subsidy per capita		0.140** (0.0135)	*	0.146*** (0.0153)
Observations Adjusted R ²	13333 0.437	13333 0.157	13333 0.820	13333 0.404

Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01

Note: Sample comprises rural households, to facilitate comparison with estimates in Subramanian and Deaton (1996).

► Full Sample

INTRODUCTION	Background	Data & Identification	Results	Conclusion
0000	000000	000000000	000000	0

SUPPLEMENTARY DATA: IHDS 2005

- India Human Development Survey
- ► 41,554 households: 1,503 villages, 971 urban neighborhoods
- More detailed household information than NSSO
 In addition to consumption, collects information on income, debt, savings, insurance
- ► Food module similar to NSSO, less detailed

INTRODUCTION	Background	Data & Identification	Results	Conclusion
0000	000000	000000000	000000	0

INCOME ELASTICITY

Devel A. HUDC Jake

Panel A: IHDS data					
Dependent variable:	Log cereal c	onsumption	Log food expenditure		
	(1)	(2)	(3)	(4)	
Log monthly income per capita	0.0462*** (0.00972)	0.0304*** (0.00959)	0.0966*** (0.0108)	0.0827*** (0.0105)	
Log rice subsidy per capita		0.295*** (0.0323)		0.259*** (0.0323)	
Observations Adjusted R^2	3962 0.306	3962 0.354	3962 0.402	3962 0.429	

Panel B: IHDS and NSSO data

Dependent variable:	Log cereal consumption			
Data:	IHDS	NSSO	IHDS	NSSO
Log monthly expenditure per capita	0.247***	0.269***		
	(0.0178)	(0.0264)		
Log rice subsidy per capita			0.320*** (0.0314)	0.179*** (0.0390)
Observations Adjusted <i>R</i> ²	3962 0.388	4255 0.357	3962 0.358	4255 0.286

Standard errors in parentheses.* p < 0.10, ** p < 0.05, *** p < 0.01

Introduction 0000	Background 0000000	Data & Identification 000000000	Results 00000	Conclusion 0

CORRUPTION

Dependent variable:	Cereal consumption per capita (1)	Caloric intake per capita (2)
Rice subsidy per capita	2.359*** (0.180)	12.04*** (1.148)
Corrupt*Rice subsidy	-1.207*** (0.304)	-7.060*** (1.480)
Observations Adjusted <i>R</i> ²	22564 0.251	22564 0.117
	0.251	

Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01

Introduction	Background	Data & Identification	Results	Conclusion
0000	0000000	000000000	000000	•
Conclus	ION			

- Subsidy has a positive and significant impact on calories, positive elasticity for all food groups: contrast to results for price subsidies
 - ► Support for hypothesis that subsidy generates income effects
 - ► Elasticity smaller than expenditure elasticity of calories: transaction costs & corruption
 - Smaller impact in corrupt states
- Future work
 - District level outcomes by PDS performance and other government programs

BONUS SLIDES

ADDING CONTROLS

Dep. variable:		(Cereal consi	umption p	er capita		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Rice subsidy	-0.231	-0.000971	-0.00491	1.831**	** 2.030**	** 1.450**	** 1.985***
	(0.253)	(0.228)	(0.229)	(0.179)	(0.158)	(0.134)	(0.158)
Controls	· ·				· ·	· ·	
Household chars.	No	Yes	Yes	Yes	Yes	Yes	Yes
Season	No	No	Yes	Yes	Yes	Yes	No
State*Year	No	No	No	Yes	Yes	No	Yes
District	No	No	No	No	Yes	Yes	Yes
Observations	22564	22564	22564	22564	22564	22564	22564
Adjusted R^2	0.000	0.076	0.077	0.192	0.250	0.236	0.248

Standard errors in parentheses. * p < 0.10, ** p < 0.05,*** p < 0.01

COBB DOUGLAS UTILITY FUNCTION $f = ((1 - \alpha)x_i + y_i)^{1/2}z_i^{1/2}$

Solution to the household's problem is:

$$y_i^* = \frac{M_i - Q(2 - \alpha - \delta)p_y}{2p_y}, z_i^* = \frac{M_i + Q(\delta - \alpha)p_y}{2p_z}, x_i^* = Q$$

conditional on:

$$Q < rac{M_i}{(2-lpha-\delta)
ho_y}$$
 (Quota < threshold value)
 $lpha < \delta$ (Transaction costs < discount)

• The total food consumption $(F_i^* = y_i^* + Q)$ is:

$$F_i^* = rac{M_i + Q(\delta - lpha) p_y}{2 p_y}$$

where $\frac{\partial F_{i}*}{\partial Q}>0$, $\frac{\partial F_{i}*}{\partial \delta}>0$ and $\frac{\partial F_{i}*}{\partial \alpha}<0$

▶ Back

PREVIOUS WORK ON THE PDS

- Kochar 2005 : Variation in value of subsidy by BPL status in 1993 & 1999
 - Imputed, not observed leading to errors of misclassification
 - BPL status also gives access to other forms of government assistance
 - ► Current program more generous, higher participation rates
- ► Tarozzi 2005 : Variation in exposure to PDS price rise in 1992
 - Actual receipt of benefit not observed, short length of exposure (1-3 months)
 - Pre-targeted program, no change in quota
- ► Khera 2011 : 300 households from 1 state
 - Uses BPL status only, no variation in value of subsidy

▶ Back

NSSO 64th Round

Schedule 1.0: 6

	quantity@	value	source
code			code ^S (5)
(2)	(3)	(4)	
101			1
102			
103			*
104			*
105			*
106			*
107			1
108			
110			
111			*
112			*
113			*
114			*
115			
116			
117			
118			*
120			
121			
122			
123			
129			
	12 12 101 102 103 104 105 106 107 108 110 111 112 113 114 115 116 117 118 120 121 122 122 123	100 (0.000) (2) (3) 101 (3) 102 (1) 103 (1) 104 (1) 105 (1) 106 (1) 107 (1) 108 (1) 110 (1) 111 (1) 112 (1) 113 (1) 114 (1) 115 (1) 116 (1) 117 (1) 118 (1) 120 (1) 121 (1) 122 (1) 123 (1)	code (0.000) (Rs: whole no.) [2] (3) (4) 101 (4) (10) 102 (10) (10) 103 (10) (10) 104 (10) (10) 105 (10) (10) 106 (10) (10) 107 (10) (10) 108 (10) (10) 110 (11) (11) 111 (11) (11) 112 (11) (11) 113 (11) (11) 114 (11) (11) 115 (11) (11) 116 (11) (11) 118 (12) (12) 120 (12) (12) 123 (12) (12)

EXPENDITURE ELASTICITY FOR THE FULL SAMPLE

Dependent variable:	Log caloric intake		Log food expenditure		Log Rs per calorie	
	(1)	(2)	(3)	(4)	(5)	(6)
Log monthly exp. per capita	0.375*** (0.00914)		0.731*** (0.00834)		0.357*** (0.00873)	
Log rice subsidy per capita		0.146*** (0.0117)	*	0.149*** (0.0139)	s	0.00808 (0.00586)
Observations Adjusted R ²	16799 0.405	16799 0.154	16799 0.807	16799 0.386	16799 0.674	16799 0.527

Standard errors in parentheses. p < 0.10, ** p < 0.05, p < 0.01

FALSIFICATION TEST: NON-PDS USERS

Dependent variable:	Cereal consumption	Log cereal consumption	Caloric intake	Log caloric intake
	(1)	(2)	(3)	(4)
Rice subsidy per capita	-0.0706 (0.115)		0.462 (0.772)	
Log rice subsidy per capita		-0.0141* (0.00750)		-0.00863 (0.00686)
Observations Adjusted <i>R</i> ²	26494 0.256	26494 0.261	26494 0.045	26494 0.152

SENSITIVITY TO SPECIFICATION

Dependent variable:	Log caloric intake					
	(1)	(2)	(3)	(4)	(5)	
Log rice subsidy (avg. family size)	0.134*** (0.00763)					
Log rice subsidy (household level)		0.131*** (0.0147)				
Size of the household		0.134*** (0.00243)				
Log rice subsidy (per person)			0.202*** (0.00992)			
Log rice subsidy (median prices)				0.119*** (0.0103)		
Log rice subsidy per capita (state*survey wave)					0.148*** (0.0107)	
Observations Adjusted <i>R</i> ²	22564 0.173	22564 0.613	22564 0.200	22543 0.159	22564 0.168	

All India vs. Rice Favoring States

Dependent variable:	Log cereal consumption			Log caloric intake		
States:	All	Rice	Non Rice	All	Rice	Non Rice
	(1)	(2)	(3)	(4)	(5)	(6)
Log rice subsidy per capita	0.0796***	0.123***	0.0439***	0.101***	0.144***	0.0666**
	(0.00677)	(0.00963)	(0.00664)	(0.00701)	(0.0103)	(0.00675)
Observations	33231	22564	10667	33231	22564	10667
Adjusted R ²	0.263	0.270	0.255	0.197	0.166	0.255

Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01

Notes: 1. All equations present results clustered at the district level. 2. All equations include household characteristics (education of hh head and spouse, age and age squared of hh head, proportion of females, land owned) and urban, state*year, district and season dummies. 3. Dependent variable in columns (1) - (3) is log of daily cereal consumption per capita, dependent variable in columns (4)-(6) is log of daily caloric intake per capita. 4. The rice favoring states are: Andhra Pradesh, Assam, Karnataka, Kerela, Orissa, Jharkhand, Chattisgarh and West Bengal. The non-rice favoring states are: Bihar, Gujarat, Haryana, Himachal Pradesh, Madhya Pradesh, Maharashtra, Punjab, Rajasthan and Uttar Pradesh.

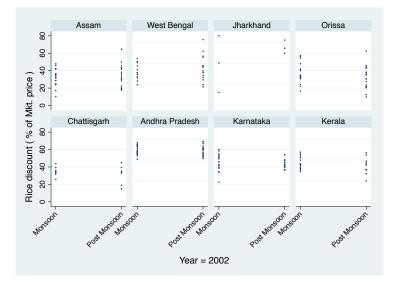
IMPACT OF THE WHEAT SUBSIDY

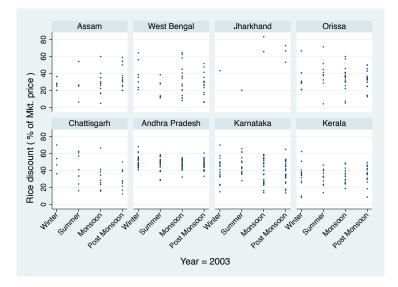
Dependent variable:	Log cereal consumption (1)	Log caloric intake (2)
Log rice subsidy per capita	0.138*** (0.0110)	0.156*** (0.0125)
Log wheat subsidy per capita	0.0172*** (0.00549)	0.0270*** (0.00519)
Observations Adjusted R ²	12235 0.275	12235 0.193

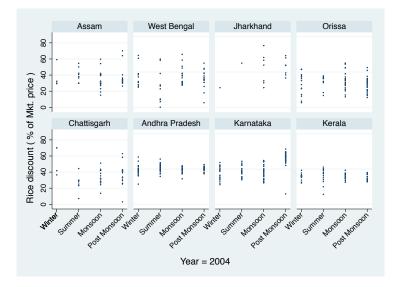
Standard errors in parentheses. * p < 0.10, **p < 0.05, ** p < 0.01

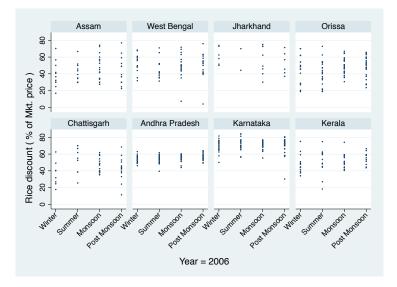
Notes: 1. All equations present results clustered at the district level. 2. All equations include household characteristics (education of hh head and spouse, age and age squared of hh head, proportion of females, land owned) and urban, state*year, district and season dummies. 3. Dependent variable in column (1) is log of daily cereal consumption per capita, dependent variable in column is log of daily caloric intake per capita.

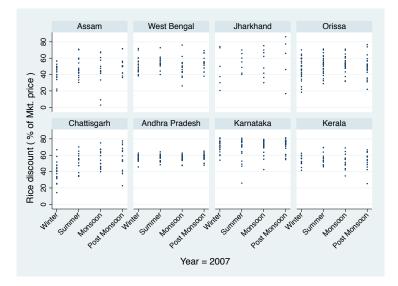
PDS RICE USERS: IHDS AND NSSO

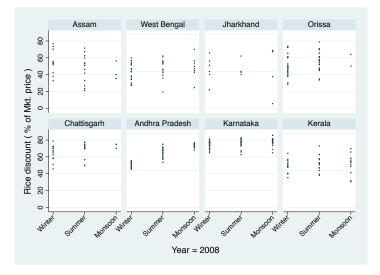

Data:	IHDS	NSSO
Monthly expenditure per capita	625.1 (442.2)	596.7 (362.4)
Monthly income per capita (Rs)	587.5 (567.3)	
PDS rice price (Rs/kg)	4.546 (1.612)	5.237 (1.627)
Market rice price (Rs/kg)	10.48 (1.906)	10.56 (2.122)
PDS rice qty (kg)	19.16 (7.253)	18.54 (8.785)
Market rice qty (kg)	24.52 (23.03)	27.97 (21.37)
Daily cereal consumption per capita (kg)	0.434 (0.158)	0.475 (0.129)
Rice subsidy per capita (Rs)	25.46 (11.18)	24.17 (11.37)
Observations	3962	4255


VARIATION IN STATE QUOTAS




▶ Back


Variation in Rice Discount for 2002



Rice Discount

IDENTIFYING VARIATION

Remaining sources of variation, conditional on controls

Across district-season-year cell

- market prices fluctuate due to random weather phenomenon, controls on the movement of goods, imperfectly integrated markets

- PDS prices are not linked to market prices, resulting in variation in the discount

- Within a district-season-year cell
 - variation in per person quota by family size

Specification

HETEROGENEOUS EFFECTS

Dependent variable:	Cereal consumption per capita			Caloric intake per capita		
	(1)	(2)	(3)	(4)	(5)	(6)
Rice subsidy per capita	1.979***	1.830***	1.960***	12.41***	11.55***	12.28***
	(0.172)	(0.173)	(0.159)	(1.214)	(1.309)	(1.142)
Urban*Rice subsidy	0.240			0.772		
·	(0.241)			(1.054)		
Lowest expenditure quartile		-52.27***			-334.8***	
		(6.058)			(29.14)	
Lowest quartile*Rice subsidy		-0.106			-2.961**	
		(0.205)			(1.169)	
Home grown rice			-15.73*			-41.21
-			(8.247)			(39.68)
Home grown*Rice subsidy			1.300***			5.893***
			(0.328)			(1.609)
Observations	22564	22564	22564	22564	22564	22564
Adjusted R ²	0.250	0.274	0.251	0.124	0.183	0.126

IMPACT ON RICE PRODUCERS

Dependent variable:	Cereal consumption	Caloric intake
	(1)	(2)
Rice quota per capita	-14.15 (18.56)	-38.18 (84.41)
Market price* quota per capita	4.483** (1.792)	19.52** (7.896)
PDS price* quota per capita	-0.989 (1.976)	-5.916 (8.667)
PDS price	3.226 (10.98)	38.62 (49.72)
Market price	-17.15* (8.760)	-52.60 (40.03)
Observations Adjusted R ²	2111 0.231	2111 0.241

IMPACT BY EXPENDITURE QUARTILE

Panel A: Cereal consumption

Dependent variable:	Log cereal consumption per capita			
Expenditure quartile:	Lowest			Highest
	(1)	(2)	(3)	(4)
Log rice subsidy per capita	0.0689*** (0.0138)	0.0895*** (0.0147)	0.109*** (0.0137)	0.175*** (0.0180)
Observations Adjusted <i>R</i> ²	5677 0.320	5709 0.362	5696 0.330	5482 0.272

Panel B: Caloric Intake

Dependent variable:	Log caloric i	а		
Expenditure quartile:	Lowest			Highest
Log rice subsidy per capita	0.0682*** (0.0135)	0.0933*** (0.0132)	0.111*** (0.0129)	0.196*** (0.0182)
Observations Adjusted R^2	5677 0.251	5709 0.294	5696 0.279	5482 0.177