Heterogeneous Spillovers from SCTs: Evidence from Lesotho

Anubhab Gupta

University of California, Davis

with

J. Edward Taylor, Mateusz Filipski, Karen Thome, Benjamin Davis, Luca Pellerano and Ousmane Niang

> UNU-WIDER Development Conference – Public Economics for Development 5-6th July, 2017 Maputo, Mozambique

Introduction

- Impacts of SCTs on the treated are well documented
 - Impact of cash transfer programs in Sub-Saharan Africa, Davis et al. (2012)
 - Using PORGRESA's RCT data, Gertler (2004) measures impacts on child health outcomes, Schultz (2004), Skoufias et al. (2001)
 - Handa and Davis (2006) review of 6 CCTs in Latin America and the Caribbean
- Measuring impacts on *ineligible households*
 - Experimental Methods: Increased consumption of ineligibles in same villages in Mexico's PROGRESA (Angelucci and De Giorgi, 2009)
 - Simulations and GE techniques: Thome et al. (2013) using Kenya's CT-OVC, Filipski et al. (2015) Lesotho CGP

Motivation and Contribution

- We use experimental data to evaluate impacts of Lesotho CGP transfers on
 - Eligible Households in Treatment clusters, and
 - Ineligible Households in Treatment clusters
 - measure intensity of treatment on treated (ITT) eligible

Motivation and Contribution

- We use experimental data to evaluate impacts of Lesotho CGP transfers on
 - Eligible Households in Treatment clusters, and
 - Ineligible Households in Treatment clusters
 - measure intensity of treatment on treated (ITT) eligible
- Other main findings:
 - Heterogeneity of treatment effect across
 - Income Sources
 - Income Distribution (Quantile Treatment Effects (QTE))
- We compare experimental results with simulation results from Filipski et al. (2015)
- Both simulation and experimental results find real economic growth
 - income **multipliers** within treated eligibles
 - Spillovers on treated ineligibles

Outline

- Lesotho Child Grants Programme
 - RCT Experimental Data
 - Baseline Summary Statistics
- Methodology
 - Difference-in-difference
 - Quantile Treatment Effects
- Results
- Comparing experimental results with simulations

Data: Lesotho's Child Grants Programme

- Cash transfers given to poor households with children
- In 5 districts reaching almost 50,000 children
- 48 electoral divisions as treatment and control clusters
- Baseline collected in 2011, follow up in 2013
- Data on both eligible and ineligible households
- Final panel consists of 2,150 hhs and 10,456 individuals
- Existing research with Lesotho CGP Data
 - Taylor, Thome & Filipski (2013)
 - Daidone *et al.* (2014)
 - Dewbre *et al.* (2015)
 - Filipski *et al.* (2015)

Data: CGP Experimental Design

Figure 1: Lesotho CGP Experimental Design *Numbers in parenthesis give the sample size in each group in each round of survey.*

- In our estimation, households with both baseline and followup data are only included
- Reduction in ineligible sample in 2013 due to budgetary constraints
- Sampling weights and clustereligibility ratio included in specifications to control for sampling bias

Data: CGP Experimental Design (contd.)

Figure 1: Lesotho CGP Experimental Design Numbers in parenthesis give the sample size in each group in each round of survey.

Table 1: Distribution of Eligible Households in Treated Clusters by
CGP Transfer Amount

CGP Monthly Transfer	Number of Children	% of Total Eligible Households
120 LSL (\$12)	1-2	51.2
200 LSL (\$20)	3-4	38.8
250 LSL (\$25)	5+	10.0

- All **eligible households** started getting **LSL 120** after baseline data collection in 2011
 - payments made quarterly
- Later payments were indexed by number of resident children
- Average transfer level LSL 164 (\$16.4) approx.

Baseline Summary Statistics

Summary Statistics	Eligible Group			In	Ineligible Group		
Summary Statistics	Control	Treatment	Diff	Control	Treatment	Diff	
Normalized Asset Index	100	103.3	-3.3	149.6	140	9.6	
Normalized Social Network Index	100	101.3	-1.3	120.9	110.5	10.4	
Household Size	5.5	5.8	-0.3**	5.1	5.3	-0.2	
Land Owned (Acres)	1.2	1.4	-0.2**	1.4	1.9	-0.5***	
Total Livestock Units (TLU)	0.8	1.0	-0.2**	1.8	2.2	-0.4*	
Average Education of members (0-17 years)	3.3	3.2	0.1	3.1	3.1	0.0	
Average Education of members (18-59 years)	5.9	5.7	0.2	6.3	6.4	-0.1	
Proportion of Female Headed Households	0.5	0.5	0.0	0.4	0.3	0.1	
Age of Household Head	51.9	52.0	-0.1	55.6	57.4	-1.8	

Table 2: Summary Statistics of Baseline Household Characteristics of Each Group

Significant- * at 10%, ** at 5%, *** at 1% respectively

• Asset Index:

 agricultural tools, house characteristics, access to electricity etc.

• Social Network Index:

 giving and receiving food, labor, ag and non-ag inputs

*Both indexes were constructed using principal component analysis

Baseline Summary Statistics

Summary Statistics	Eligible Group			In	Ineligible Group		
	Control	Treatment	Diff	Control	Treatment	Diff	
Normalized Asset Index	100	103.3	-3.3	149.6	140	9.6	
Normalized Social Network Index	100	101.3	-1.3	120.9	110.5	10.4	
Household Size	5.5	5.8	-0.3**	5.1	5.3	-0.2	
Land Owned (Acres)	1.2	1.4	-0.2**	1.4	1.9	-0.5***	
Total Livestock Units (TLU)	0.8	1.0	-0.2**	1.8	2.2	-0.4*	
Average Education of members (0-17 years)	3.3	3.2	0.1	3.1	3.1	0.0	
Average Education of members (18-59 years)	5.9	5.7	0.2	6.3	6.4	-0.1	
Proportion of Female Headed Households	0.5	0.5	0.0	0.4	0.3	0.1	
Age of Household Head	51.9	52.0	-0.1	55.6	57.4	-1.8	

Table 2: Summary Statistics of Baseline Household Characteristics of Each Group

Significant- * at 10%, ** at 5%, *** at 1% respectively

- Most baseline variables are not significantly different between control and treatment groups
- Some significant differences in variables: HH Size, Land Owned and TLU

A Naïve Diff-in-Diff Comparison of Household Incomes

Table 3: Monthly Income of Household Groups (in LSL)

	Treated	Clusters	Control Clusters		
Survey Round -	Eligible	Ineligible	Eligible	Ineligible	
2013 (Follow-up)	905.4	792.8	555.4	932.9	
2011 (Baseline)	406.8	661	444.5	732.5	
Difference between 2013 and 2011	<u>498.6</u> *** (0.000)	131.8** (0.025)	110.9*** (0.001)	<u>200.4</u> *** (0.004)	
Difference-in-difference	387.7 ^{***} (0.000)	-68.7 (0.450)			

p-values in parentheses

p < 0.10, p < 0.05, p < 0.01

- Household Incomes increased across all groups from baseline (2011) to follow-up (2013)
- Difference-in-difference (DiD) shows significant increase for eligible hhs.
- Naïve DiD could be misleading
- **Regression-based approach** for evaluating Treatment Impacts

Empirical Strategy: Treatment Effect on Treated Clusters

• Start with estimating impacts on **treated local economies**:

(1)
$$D_{ijt} = \alpha + \beta T_j + \rho Y_t + \theta (T_j Y_t) + \epsilon_{ijt}$$

 D_{ijt} : Income of household *i* in cluster *j* and year *t*

T_j: Treatment dummy equal to 1 if household is in a treatment cluster *j*, 0 otherwise

 Y_t : Year dummy, 1 for follow – on and 0 for baseline

 ϵ_{ijt} : Idiosyncratic error term

Disaggregating Treatment Effect and ITT

• Disaggregating the impacts on treated eligible and treated ineligible households:

(1)
$$D_{ijt} = \alpha + \beta T_j + \rho Y_t + \theta (T_j Y_t) + \epsilon_{ijt}$$

 $\theta = \gamma + \xi E_i$

 E_i : Eligibility Dummy, 1 if household is eligible, 0 otherwise

(2)
$$D_{ijt} = \alpha + \beta T_j + \rho Y_t + \gamma (T_j Y_t) + \xi T_j Y_t E_i + \epsilon_{ijt}$$

• Introducing **intensity of treatment** on treated (ITT) eligible households:

(3)
$$D_{ijt} = \alpha + \beta T_j + \rho Y_t + \gamma (T_j Y_t) + \xi T_j Y_t E_i + \delta T_j Y_t E_i CGP_{i,t} + \epsilon_{ijt}$$

 γ measures **impact on ineligible** and $(\gamma + \xi)$ **on eligible** in (2)

 $(\gamma + \xi + \delta * CGP_{i,t})$ estimates the **ITT on eligible** households in (3) at different level of CGP transfers

Results: Impacts on Eligible and Ineligible Households

	(3)	(4)	(5)	(6)	(7)	(8)
Parameter Estimates	Nominal	Real	Nominal	Real	Nominal	Real
	Income	Income	Income	Income	Income	Income
$T^*Y(\gamma)$	143.5**	116.1**	120.1^{*}	97.25^{*}	143.5**	116.2**
	(67.49)	(54.63)	(63.10)	(51.08)	(67.46)	(54.61)
$T(\boldsymbol{\beta})$	-85.70**	-69.38**	-85.38**	-69.12**	-85.46**	-69.18**
	(34.49)	(27.92)	(34.53)	(27.96)	(34.50)	(27.93)
$Y(\rho)$	943.1***	763.4***	940.5***	761.3***	941.2***	761.9***
	(97.38)	(78.83)	(97.49)	(78.92)	(97.40)	(78.85)
$T^*Y^*E(\xi)$	165.6***	134.1***			-177.3	-143.5
	(60.49)	(48.97)			(120.5)	(97.56)
$T*Y*E*CGP(\delta)$			1.225***	0.992^{***}	2.079^{***}	1.683***
			(0.306)	(0.248)	(0.588)	(0.476)
Constant	-358.4***	-290.1***	-355.8***	-288.0^{***}	-352.6***	-285.5^{***}
	(99.59)	(80.62)	(99.59)	(80.62)	(99.57)	(80.60)
N	3893	3893	3893	3893	3893	3893
R-squared	0.106	0.106	0.108	0.108	0.109	0.109
Eligible with 120LSL			267.1***	216.3***	215.7***	174.7***
Eligible with 200LSL			365.1***	295.7^{***}	382.0***	309.3***
Eligible with 250LSL			426.4***	345.3***	486.0^{***}	393.5***
Eligible with 164LSL (average	309 1***	250 2***	321 0***	259 9***	307 2***	248 7***
transfer)	302.1	230.2	321.0	239.9	307.2	2 4 0.7
Impact on Ineligible	143.5**	116.1**	120.1*	97.3*	143.5**	116.2**

 Table 6: Econometric Results from Estimation of Equation (2)

- All specifications **control** for baseline household characteristics, district fixed effects, cluster eligibility ratio
- Specification on (7) and (8) is our preferred specification with ITT
- Significant income spillovers to both eligible and ineligible household groups

Cluster robust standard errors in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01

Results- Heterogeneity of Impact across Income Sources

CGP Impacts on Real (Inflation-	Income from	Income from Wage	Income from Other
adjusted Income)	Livestock	Work	Sources
Impact on Ineligible households	48.6***	18.73	-121.6
(θ)			
	(0.007)	(0.745)	(0.298)
Impact on Eligible households at	-0.6	-91	112.8
LSL 120	(0.058)	(0.866)	(0.102)
$(\gamma + \xi + \delta \cdot 120)$	(0.938)	(0.000)	(0.192)
Impact on Eligible households at	-0.3	13.8	108 3**
Mean	(0.075)	(0.788)	(0.012)
$(\gamma + \xi + \delta \cdot 164)$	(0.975)	(0.788)	(0.012)
Impact on Eligible households at	0.1	37 7	768 6***
LSL 200	-0.1	(0.521)	208.0
$(\gamma + \xi + \delta \cdot 200)$	(0.992)	(0.331)	(0.002)
Impact on Eligible households at	0.2	58.9	365.9***
LSL 250	(0.989)	(0.300)	(0.001)
$(\gamma + \xi + \delta \cdot 250)$			
N	2487	1430	882

Table 7: DD Impact of CGP on Eligible and Ineligible Households from Equation (2), by Income Source with Real Income as Dependent Variable

- Impact on ineligible households are through Livestock Income
- Impact on eligible households through Self-employment and crop income

p-values in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01

Measuring Quantile Treatment Effects: Test for Rank Similarity

- Assumption of rank invariance and rank similarity is required for identification (Dong and Shen, 2015; Frandsen and Lefgren, 2015)
- We use **regression-based test** of Frandsen and Lefgren (2015)

<u>Method</u>

Construct sample ranks

$$\widehat{U}_{ijt} = (1 - T_j)\widehat{F}_0(D_{ijt}) + T_j\widehat{F}_1(D_{ijt})$$

Estimate the following equation

$$\widehat{U}_{ijt} = \alpha_0 + \alpha_1 T_j + X'_i \Gamma + T_j X'_i \Theta$$

 $H_0: \Theta = \mathbf{0}$ Rank similarity holds

 $H_A: \Theta \neq \mathbf{0}$ Rank similarity assumption fails

- Rank Similarity assumption holds for eligible households
- Failure indicates that, at the least, include those covariates in QTE estimation

Results- Heterogeneity of Impact across Income Distribution

Dependent Variable: Real	Quantil	e = 0.25	Quantile	p = 0.50	Quantile	p = 0.75
Income	Quantiti	c = 0.25	Quantite	<u> </u>	Quanne	x = 0.75
$T^*Y(\gamma)$	-15.11	-16.83	77.39^{*}	76.10^{*}	159.4**	159.6**
	(24.16)	(22.72)	(43.45)	(45.84)	(68.80)	(65.52)
$T(\beta)$	-8.452	-8.030	-27.25	-25.62	-74.41*	-74.62**
	(13.87)	(13.05)	(24.95)	(26.32)	(39.51)	(37.62)
$Y(\rho)$	136.9***	137.8***	561.1***	565.8***	930.6***	930.5***
	(45.79)	(43.06)	(82.36)	(86.88)	(130.4)	(124.2)
$T^*Y^*E(\xi)$	156.8***	316.0***	-213.8**	168.1***	-324.2**	140.6**
	(48.32)	(20.61)	(86.92)	(41.58)	(137.6)	(59.43)
$T*Y*E*CGP(\delta)$	0.998^{***}		2.317***		2.481^{***}	
	(0.261)		(0.470)		(0.744)	
Constant	-73.39	-75.61*	-232.3***	-243.9***	-262.0**	-261.8**
	(46.34)	(43.57)	(83.34)	(87.91)	(132.0)	(125.6)
Ν	3893	3893	3893	3893	3893	3893
R-squared	-	-	-	-	-	-
Eligible with 120LSL	261.5***		141.6***		132.9*	
Eligible with 200LSL	341.3***		327.0***		331.4***	
Eligible with 250LSL	391.2***		442.8^{***}		455.5***	
Eligible with 164LSL (average	305 3***	316 0***	2/13 3***	211 2***	2/1 8***	300 2***
transfer)	505.5	510.0	243.3	244.2	241.0	500.2
Impact on Ineligible	0	0	77.39*	76.10^{*}	159.4**	159.6**

 Table 8: Quantile Treatment Effects on the Treated Eligible and Ineligible Households

- At lower transfer levels, highest impacts on households in bottom quantile
- Assuming rank invariance, no spillover effect on bottom quantile ineligible households
- These results are robust to including non-linear effect of CGP on household income

Cluster robust standard errors in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01

Comparing Simulations and Experiments

Table 10. Local Economy Multipliers Compared

Estimation	Real Multiplier	Nominal Multiplier
Experimental results using	1.86	2.20
baseline and follow-up data	(1.81, 1.91)	(2.14,2.26)
LEWIE simulation results	1.53	2.21
using baseline data [*]	(1.43,1.62)	(2.07,2.39)
* Source: Filipski et al. (2015)		

- Experimental results indicate impact on eligible households higher than found by simulations
- **Real multiplier** from *experimental* data **bigger** than that from *simulations*
- Our nominal multiplier with tighter confidence interval

- We find **significant impact of CGP** on a **treated local economy**, which we disaggregate into impacts on eligible and ineligible households
- Our regression results are robust to alternative specifications and sample restricted to only eligible households
- Impacts are heterogeneous by income source and income distribution
 - QTE results show that for lowest transfer level, bottom quantile households benefit most
- Our results **confirm the spillovers** found by Taylor, Thome and Filipski (2013) and Filipski et al. (2015)
- These results are key for understanding SCTs from policy perspective beyond usual impact evaluation literature

Thank you

¿ Questions ?