Gone with the Wind: International Migration

Amelia Aburn¹ Dennis Wesselbaum²

¹Victoria University Wellington

²University of Otago and Centre for Global Migrations

UNU-WIDER Development Conference

Migration and Mobility

October 5, 2017

Motivation

"Where shall I go? What shall I do?"

- European refugee crisis overshadows global trend: migration
 - ▶ 3.3% of the world's population (250 mio.) are migrants
 - Faster pace of migration
 - ► South-South migration larger than South-North migration
 - ► (Conservative) Forecast for 2050: 405 million migrants
- Migration matters
 - ▶ For destination and origin countries
 - Economic and political factors

Contribution

- The paper makes two contributions
 - ▶ Step 1
 - ★ Joint analysis of driving forces of international migration
 - ★ Year-to-year variations and long-run effects
 - ★ Build rich panel data set of international migration
 - ▶ Step 2
 - ★ Dynamic response of migration to shocks
 - * Panel VARX model
 - ★ Identification of shocks

Driving Forces

- Driving forces are increasingly complex and time-varying
 - Economic
 - * Better employment, economic opportunities,...
 - Political
 - * Warfare, terrorism,...
 - ★ Political freedom
 - Climatic
 - Disasters, temperature

4 / 26

Driving Forces - Climate Change

- Changes to natural systems \Rightarrow severe effects (Dell et al. (2009))
 - Increases temperatures and incidence, likelihood, and frequency of disasters
 - ★ Howe et al. (2012): Inference about climate change
 - ► Reduce agricultural productivity (Burke et al. (2015))
 - ▶ Reduce crop yields (Lesk et al. (2016) \Rightarrow agricultural income risk \uparrow
 - ▶ Impact on health conditions (WHO (2009))
 - Water scarcity and rivalry over scarce resources
 - Civil unrest and climate-driven conflicts.
 - ► ⇒ Will render some areas untenable
- Migration as an adaptation strategy

Preview on Key Findings

- Time dimension and year-to-year variations
 - Crucial to understand/identify the effects of climate change
- Climate change
 - Significant adverse real effects
 - At origin: more important than income and policy
- Effects of temperature are non-linear
 - ▶ In agricultural land, GDP at origin, and weather-related disasters
- Panel VARX
 - Response of migration different across drivers
 - ► Temperature: negative on-impact then overshooting
 - ► Binding liquidity constraints and spatial diversification

Literature Review

- Cai et al. (2016), Cattaneo and Peri (2016)
 - ► Temperature and precipitation
- Backhaus et al. (2015)
 - ► Temperature and precipitation (unemployment, GDP, population, trade, EU membership, and demographic pressure)
- Beine and Parsons (2015)
 - Rainfall and temperature (GDP, migration costs, international violence, and natural disasters)
- Gröschl and Steinwachs (2016)
 - Hazard index (lagged stock of migrants, GDP, civil wars, regional trade agreement, migration costs)

Theoretical Framework

- Agents make optimal decisions on whether to migrate or to stay
- Maximize utility across multiple destinations, j (and home, i)

$$u_{ijt} = \ln(w_{jt}) + A_{jt}(\cdot) - C_{ijt}(\cdot) + \varepsilon_{jt},$$

$$u_{iit} = \ln(w_{it}) + A_{it}(\cdot) + \varepsilon_{it}.$$

 After some math (McFadden (1984)), the bilateral migration flow is given by

$$\begin{array}{ll} \ln \left(\mathit{M}_{ijt} \right) & = & \ln \left(\mathit{M}_{iit} \right) + \ln \left(\mathit{w}_{jt} \right) - \ln \left(\mathit{w}_{it} \right) + A \left(\mathit{Pol}_{jt}, \mathit{Cli}_{jt}, \mathit{Eco}_{jt} \right) \\ & - A \left(\mathit{Pol}_{it}, \mathit{Cli}_{it}, \mathit{Eco}_{it} \right) - C \left(\mathit{c}_{ij}, \mathit{c}_{i}, \mathit{c}_{j}, \mathit{c}_{jt} \right) + \varepsilon_{ijt}. \end{array}$$

Modelling Migration (cont'd)

Econometric Specification

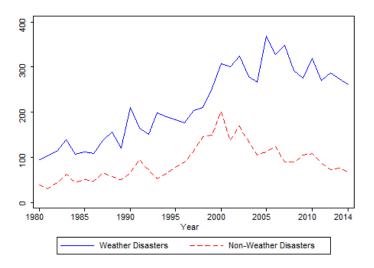
• Theoretical equation can be written as augmented gravity equation

$$\ln (M_{ijt}) = \alpha_{it} + \beta_1 \ln (w_{jt}) - \beta_2 \ln (w_{it}) + \beta_3 A (Pol_{jt}, Cli_{jt}, Eco_{jt})
-\beta_4 A (Pol_{it}, Cli_{it}, Eco_{it}) - \beta_5 C (c_{ij}) - \beta_6 C (c_{jt}) + \varepsilon_{ijt}.$$

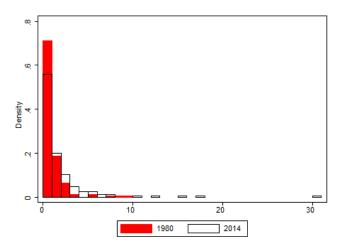
- Origin-by-year fixed effects
 - Controls for all time-varying terms that are constant across destinations but vary across years and country of origin
 - ▶ Time-invariant origin-related migration costs $(C(c_i))$ and M_{iit}
 - Unobserved heterogeneity between migrants and non-migrants

Modelling Migration (cont'd)

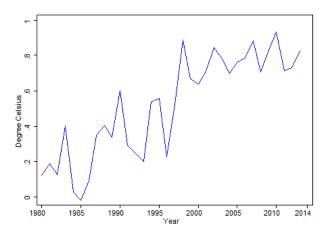
Econometric Specification (cont'd)

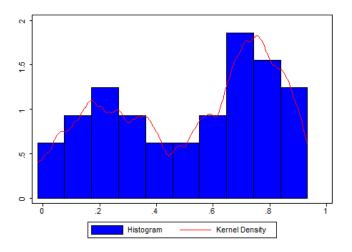

- Econometric issues
 - Log-specification with zeros
 - ★ Transformation \Rightarrow In $(1 + M_{ijt})$
 - ► OLS estimation of log-linearized gravity equation with heteroscedasticity ⇒ biased estimates
 - Poisson Pseudo-Maximum Likelihood (PPML) estimator (Santos Silva and Tenreyro (2006, 2011))
 - ► Overdispersion and excess zeros (Burger et al. (2009)) ⇒ Negative binomial regression

Data


- Bilateral panel data set
 - ▶ 16 destination countries and 198 origin countries
 - Period: 1980-2014 (110880 observations)
- Migration
 - ▶ **Bilateral flow**: UN Population Division, 2015 Revision merged with OECD and Ortega and Peri (2013)
 - Large time dimension: 35 years, Adserà et al. (2016): 30
 - ▶ **79856 observations**: $10 \times \text{Mayda (2010)}$, $2 \times \text{Ortega and Peri (2013)}$
 - ▶ 17% zeros: Gröschl and Steinwachs (2016): 65 percent
 - ► Large set of country-pairs: Mayda (2010): 14/79, Ortega and Peri (2013): 15/120

- Migration costs
 - Distance, dummies for: land borders, common language, colonial ties
- Economic variables
 - ► GDP, share of young population, bilateral aid, agricultural land (all World Bank)
- Political variables
 - War dummy, political framework indicator (polity2, PolityTM IV project by Center for Systemic Peace)
- Climate variables
 - ► **Temperature** anomalies (Berkeley Earth)
 - ▶ Disasters (EM-DAT): Weather- and Non-Weather-related
 - $\star \geq 10$ killed, ≥ 100 affected, state of emergency, or call for international assistance


Disasters


Disasters (cont'd)

Temperature

Temperature (cont'd)

Results

Basic Model

Variable	1	2	3	4	5	6
In GDP _j	-0.82*** (0.15)	0.64** (0.27)	0.95*** (0.23)	1.18*** (0.06)	2.71*** (0.82)	1.00*** (0.21)
In GDP _i	0.26*** (0.03)	0.22*** (0.03)	-0.37*** (0.06)	-0.24*** (0.02)	0.08 (0.13)	
In Distance _{ij}	-0.87*** (0.06)	-1.02*** (0.06)	-0.99*** (0.06)	-0.14*** (0.01)	-0.73*** (0.09)	-0.98*** (0.06)
Border _{ij}	0.67* (0.36)	0.71**	-0.03 (0.21)	-0.11** (0.05)	0.40 (0.26)	0.002 (0.22)
Language _{ij}	1.33*** (0.18)	0.19 (0.18)	0.71*** (0.10)	0.04* (0.02)	1.03*** (0.18)	0.69*** (0.11)
Colony _{ij}	-0.16 (0.24)	0.26 (0.23)	0.84*** (0.14)	0.3*** (0.03)	1.43*** (0.21)	0.78*** (0.15)
Obs.	71826	71826	71826	71596	71826	71826
R_{adj}^2	0.17	0.35	0.75		0.78	0.76
Estimator	OLS	OLS	OLS	NegBin	PPML	OLS
Fixed Effects						
Year	Yes	Yes	Yes	Yes	Yes	Yes
Destination	No	Yes	Yes	Yes	Yes	Yes
Origin	No	No	Yes	Yes	Yes	Yes
Origin-Year	No	No	No	No	No	Yes

Results (cont'd)

Joint

Variable	3	7	8	9	10	11	12
In GDP _j	0.95*** (0.23)	0.95*** (0.23)	0.89*** (0.24)	0.85*** (0.25)	0.84*** (0.25)	1.38*** (0.29)	1.36*** (0.07)
In GDP_i	-0.37*** (0.06)	-0.37*** (0.06)	-0.22*** (0.06)	-0.23*** (0.06)	-0.24*** (0.06)	-0.18*** (0.06)	-0.11*** (0.02)
In Distance _{ij}	-0.99*** (0.06)	-0.99*** (0.06)	-0.91*** (0.06)	-0.91*** (0.06)	-0.91*** (0.06)	-0.91*** (0.06)	-0.06*** (0.01)
Border _{ij}	-0.03 (0.21)	-0.03 (0.21)	-0.01 (0.21)	0.0009 (0.21)	0.0001 (0.21)	0.003 (0.21)	0.01 (0.05)
Language _{ij}	0.71*** (0.10)	0.71*** (0.10)	0.72*** (0.11)	0.71*** (0.11)	0.72*** (0.11)	0.72*** (0.11)	0.08*** (0.03)
Colony _{ij}	0.84*** (0.14)	0.84*** (0.14)	1.00*** (0.15)	1.01*** (0.15)	1.01*** (0.15)	1.01*** (0.15)	0.22*** (0.03)
War;		0.04 (0.05)	0.04 (0.05)	0.04 (0.05)	0.04 (0.05)	0.04 (0.05)	0.02 (0.02)
War _{ij}		-0.21 (0.25)	0.30 (0.23)	0.29 (0.23)	0.30 (0.23)	0.33 (0.23)	0.2 (0.14)
Policy _j			-0.004 (0.05)	0.001 (0.05)	0.001 (0.05)	-0.03 (0.05)	0.03*** (0.01)
Policy;			0.01*** (0.004)	0.01*** (0.004)	0.01*** (0.004)	0.01** (0.004)	0.01*** (0.001)
Temperature _j				-0.05*** (0.01)	-0.05*** (0.01)	-0.05*** (0.01)	-0.02*** (0.005)
Temperature;				0.02* (0.01)	0.03*	0.02* (0.01)	0.01* (0.005)
W-Disaster _j					0.002 (0.003)	-0.002 (0.003)	-0.004*** (0.001)
W-Disaster;					0.02*** (0.004)	0.02*** (0.004)	0.008*** (0.001)
Y Population _j						-5.41*** (1.02)	-1.36*** (0.28)
Y Population;						4.01*** (0.68)	3.2*** (0.16)

Results (cont'd)

Robustness

- Bilateral migration rate
- Lagged values (GDP)
- Lagged dependent variable (Network/Diaspora effects)
- Non-linear effects (squared)
- Different measures (GDP, distance)
- Change in temperature
- Methods (MR, IV-GMM and robust, bootstrapped, and jackknifed SE)
- Other variables
 - ► Trade, inflation, pop. density, immigration laws, EU, religion

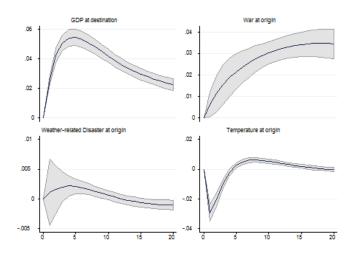
Non-Linear Effects of Climate Change

Variable	10	15	16	17	18	19
In GDP_j	0.84*** (0.25)	0.83*** (0.25)	0.84*** (0.23)	1.04*** (0.26)	0.85*** (0.25)	0.83*** (0.25)
In GDP_i	-0.24^{***}	-0.24***	()	-0.18^{***}	-0.25^{***}	-0.24^{***}
$Temperature_j$	(0.06) -0.05*** (0.01)	(0.06) -0.05*** (0.01)	-0.05*** (0.01)	(0.06) -0.1*** (0.01)	(0.06) -0.05*** (0.01)	(0.06) -0.05*** (0.01)
Temperature;	0.03* (0.01)	0.03* (0.01)	,	0.02 (0.01)	0.1*** (0.02)	0.03* (0.01)
$W ext{-}Disaster_j$	0.002 (0.003)	0.003 (0.003)	-0.002 (0.002)	0.0001 (0.002)	0.0003	0.0003
W-Disaster;	0.02*** (0.004)	0.02*** (0.004)	()	0.02*** (0.004)	0.02*** (0.004)	0.02*** (0.004)
$NW\text{-}Disaster_j$	()	0.02***	0.02** (0.01)	0.02***	0.02***	0.02***
NW-Disaster;		0.02***	(0.01)	0.02*** (0.006)	0.01** (0.006)	0.02***
$Agriculture_j$		(0.01)		-0.02*** (0.005)	(0.000)	(0.000)
Agriculture;				0.006 (0.004)		
$Temp_j\!\timesAgr_j$				-0.003***		
$Temp_i \times Agr_i$				(0.0004) 0.005***		
$GDP_i \times Temp_i$				(0.001)	-0.1***	
$W ext{-}Dis_i imes Temp_i$					(0.01)	0.01** (0.005)

Dynamic Effects

Panel VAR

- Dynamic effects of shocks to drivers of migration
- We consider four shocks
 - ▶ Income at destination
 - Wars
 - ► Temperature ⇒ long-run climate change
 - ▶ Disasters ⇒ short-run climate change
- Estimation of PVARX
 - One lag
 - GMM with robust standard errors


Dynamic Effects (cont'd)

Panel VAR - Identification

- Identification assumptions
 - ▶ Unemployment → GDP
 - ▶ Epidemic → War
 - ★ Governments blamed for not protecting citizens
 - ▶ Volcanic activity → Temperature
 - ★ *SO*₂ vs. *CO*₂
 - ★ Stordal et al. (2017): global temperature \uparrow by 7° C over short-run
 - ► Agricultural land → Weather-disaster
 - Increased fertilizer usage (green house gases), larger changes in land use (vulnerability and intensity of disasters)

Dynamic Effects (cont'd)

Impulse Response Functions

Dynamic Effects (cont'd)

Results

- Temperature shocks
 - ▶ Halliday (2006), Piguet et al. (2011), Cattaneo and Peri (2016)
 - ★ Binding liquidity constraints
 - ▶ Dillon et al. (2011)
 - ★ Asset depletion to smooth consumption during transitory shock ⇒ migration costs
 - ★ Insurance against income risk via spatial diversification ⇒ less efficient with rising temperatures

Conclusion

- We add to the literature on driving forces of migration
 - Joint analysis of migration motives
 - Year-to-year variations and long-run effects
 - Dynamic effects of shocks to migration
- Key findings
 - Complex mix of economic, political, and climatic factors
 - Climate change is an important driving factor
 - Shocks have long-lasting effects, different across factors

Conclusion (cont'd)

Policy Implications

- Implications for national and international policies
 - Study dynamic response of migration
 - Speed of policy response matters
- Short-run policies
 - Flexibility, international collaboration
- Long-run policies
 - Structural adaptation mechanisms (IPCC (2012))
- "Frankly, my dear, we should give a damn."