LABOR RESPONSE TO CLIMATE VARIATION IN EASTERN AFRICA

Valerie Mueller Arizona State University, IFPRI

> Glenn Sheriff Arizona State University

Xiaoya Dou University of Maryland

Clark Gray University of North Carolina Chapel Hill

October 4, 2017 Migration and Mobility UNU-WIDER Development Conference Accra, Ghana

MOTIVATION

- ► Africa is likely to experience warming in excess of 2 standard deviations (IPCC 2013; Niang et al., 2014)
- ▶ Heat stress affects productivity in agriculture (Schlenker et al., 2006; Seo et al., 2009; Lobell et al., 2011, 2012) and perhaps other sectors (Hsiang, 2010; Dell et al., 2012; Burke et al., 2015)
- Adaptation is a key component of the UN Framework Convention on Climate Change agreements and development assistance
- ► Worker response to temperature is poorly understood, especially in Africa

What do we do?

▶ Take individual panel Living Standards Measurement Study microdata (55,277 person-years, ages 15–65) on participation in 7 activities over previous 12 months

Agriculture		Non-agriculture				
Wage	Self- employed	Wage	Self- employed	Migrate*	School	Not employed
*Tem	porary: awa	ay for a	t least 1 of	previous 1	2 months	

 for four East African countries: Malawi (2010, 2012), Uganda (2009, 2010, 2011), Tanzania (2008, 2010, 2012), Ethiopia (2011, 2013);

What do we do?

- merge with temperature and rainfall taken from NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA);
 - 1. Take the mean of the monthly values over a 24-month period leading to the interview month t
 - 2. 24-month period allows for lagged effects on employment outcomes
 - 3. Derive z-scores to characterize deviations in climate relative to all other consecutive 24-month periods between 2000 and 2014
- ▶ to see how temperature affects worker responses.

To anticipate where needs for climate adaptation resources will likely be highest.

Do increasing temperatures lead to productivity shocks that

- provoke rural out-migration?(Barrios et al., 2006; Dillon et al., 2011; Poelhekke, 2011; Marchiori et al., 2012; Henderson et al., 2017; Gray and Mueller, 2012a,b; Gray and Bilsborrow, 2013; Hunter et al., 2013; Mueller et al, 2014; Gray and Wise, 2016)
- cause a shift from agricultural to nonagricultural activity? (Kochar, 1999; Mathenge and Tschirley, 2015; Colmer, 2016)
- ► cause a shift from self to wage employment? (Rose, 2001)
- cause rural unemployment?

- Workers allocate time h across K activities with income y_k to maximize utility from consumption c and leisure s.
- Return from each activity except leisure depends on individual characteristics d and local climate z.

$$\max_{c,s} \left\{ U(c,s) : c = \pi(\mathbf{h}; \mathbf{d}, \mathbf{z}); s = \bar{h} - \sum_{k=1}^{K} h_k \right\},\$$

where π denotes total income,

$$\pi(\mathbf{h}; \mathbf{d}, \mathbf{z}) = \sum_{k=1}^{K} y_k(h_k; \mathbf{d}, \mathbf{z}).$$

marginal return to each activity equals marginal rate of substitution of leisure for consumption.

Result: Relative, not absolute, climate productivity impacts determine time allocated to each activity.

Result: Only changes in overall non-employment rates indicate a productivity impact.

Several reasons why monotonic productivity impact can produce non-monotonic time response, even for warm countries

Result: Changes in continuous hours can be transmitted to discrete participation decisions (our data)

DATA: DESCRIPTIVE STATISTICS

	Urban	Rural	Total
Occupational participation rates			
Agriculture			
Wage labor	0.03	0.09	0.07
Self-employed	0.51	0.84	0.78
Non-agriculture			
Wage labor	0.18	0.07	0.09
Self-employed	0.23	0.15	0.16
Migrate	0.12	0.11	0.11
School	0.18	0.13	0.14
Non-participant	0.14	0.06	0.07
Climate			
Temperature z-score	0.52	0.35	0.39
	(0.97)	(0.99)	(0.99)
Rainfall z-score	-0.07	-0.15	-0.13
	(0.88)	(0.84)	(0.85)
Other	× /	· /	. ,
Female	0.52	0.51	0.52
Large landowner	0.40	0.55	0.52
Observations	15,241	40,036	55,277

MAIN EMPIRICAL SPECIFICATION

Linear probability model for seven activities

$$L_{ikt} = \sum_{\ell=1}^{2} d_{\ell} \left[\sum_{m=1}^{2} \left[\beta_{k\ell m} z_{imt} + \beta_{k\ell m m} \left[z_{imt} \right]^{2} \right] + \beta_{k\ell 12} z_{i1t} z_{i2t} \right]$$

+ $\gamma_{ik} + \tau_{k}(t) + \epsilon_{ikt},$
for $\ell = \{$ rural, urban $\}, \qquad m = \{$ temperature, rain $\}.$

- individual fixed effect
- quadratic time trend-robust to linear, linear country, linear rural and urban, linear country rural and urban time trends
- ▶ standard errors clustered by baseline enumeration area
- use sampling and inverse probability weights accounting for attrition-robust to exclusion of ipw (Fitzgerald et al., 1998)
- ▶ q-values for false discovery rates (Anderson, 2008)

High temperature decline in agricultural wage labor

Agricultural wage employment

High temperature decline in urban outmigration

Migration

High temperature decline in male urban outmigration

Migration by gender

Non-agriculture self-employed

Not Employed

WHY URBAN AREAS?

WHY URBAN AREAS?

Lower probability of engaging in agricultural self employment backstop

Agricultural self employment

Is there a barrier to entry to agricultural self-employment?

Cannot observe directly

Instead, divide sample engaging in an activity besides agricultural self-employment into two groups:

- ▶ Have engaged in the other activity *and* ag self employment in the same year ("access")
- ► Have engaged in the other activity *but not* ag self employment in the same year ("no access")

If no barrier, probability of not employed should be same across groups.

WHY URBAN AREAS?

Rural

Only non-agricultural self employment reliant on agricultural inputs sees participation decline with high temperatures

Participation in non-agricultural self employment, conditional on agricultural input intensity

Conclusions

At high temperatures:

- ▶ Urban unemployment increases
 - reduced migration
 - nonagricultural self employment reliant on agricultural inputs
- ▶ Rural unemployment unaffected
 - nonagricultural self employment reliant on agricultural inputs falls
 - ▶ high levels of agricultural self-employment independent of temperature

Empirical results consistent with following narrative.

Agricultural self-employment is a backstop occupation. People always work a little on family plot, regardless of temperature. At high temperatures, however, agricultural productivity declines, causing:

- ▶ reduced demand for agricultural wage labor and temporary urban migrants (Potts 1995, 2013; Tacoli 2001)
- reduced demand for labor in sectors for which it is a complement to agricultural inputs (e.g., food vendors)
- reduced employment in urban areas since relatively little access to agricultural self-employment

As temperatures in East Africa increase with global climate change, we may

- not see migration from rural to urban areas, but reduced migration from urban to rural
- not see a shift from agricultural to non-agricultural employment (i.e., complements)
- see increased unemployment and attendant social disruption primarily in urban areas

May be greater need for adaptation in urban areas due to agricultural linkages.