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Human Development Index (HDI)

HDI Dimensions and Indicators
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e Indicator of human capabilities
e Probably the main indicator to assess the multidimensional development of countries




Human Development Index: beyond averages?

* Official HDI computed at the level of countries.

* Several projects compute HDI at a disaggregated level within certain countries.
* But, no systematic disaggregated data level, globally comparable.

* Exception: Permanyer and Smits (2019), at the provincial level.

Question: How to use satellite images to predict development variables globally at
different levels of disaggregation?

There are over 700 Earth observation satellites in orbit.
Collectively, the retrieve > 100TB ot data per day.

Potential to bring new standards (for comparability)



Human Development beyond averages

This presentation: emphasis on the HDI (Experimental, not official) and on
downscaling (tackling the problem of limited information).

Administrative divisions (used here)

Countries (ADMO): 189 with data out of UN 193 member states
“Provinces” or “States” (ADM1): 1,707 units with ‘unofticial’ data
“Municipalities” or “Counties” (ADM2): around 61,172 units.



Methodology

Flexible use of Satellite Images

* MOSAIKS (Satellite data using daytime images), complemented with Nighttime
Lights

First Stage: MOSAIKRS transforms satellite images into large data vectors (through

an unsupervised algorithm—Random Convolutional Features). Rolt et al (2021).

Second Stage: Ridge regressions (to accommodate big data). Using training data sets
on labeled data.



Predicting HDI: Province level (ADM1 to ADM1)
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Downscaling HDI: ADMO to ADM1

HDI predicted at the province level (n=1,344)
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Training on country-level data (ADMO) and predicting on provincial (ADMT1) level.
Using demeaned prediction, then adding back the country mean.



Downscaling HDI: Country to Province
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Downscaling from ADM1 to ADM2, can we?
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Finally: Downscaling HDI From ADM1 to ADM2

A Observed HDI at provinicial level (Smits and Permanyer, 2019)

Predicted HDI at municipality level




Why this is important? Better local picture for

policies (Leaving No One Behind)

Differences in estimated HDI quintile, within countries
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Why this is important?
Ability to interact with new generation of data

#Humanclimatehorizons platform:

Hyper localized effects of climate change

on human development:
2020-2100

Launched expected October 2022




Conclusions

Promising results in the disaggregation of HDI using SIML

* Predicting ADM1 from ADM1 (R-squared 0.78)

* Downscaling from ADMO to ADM1 (R-squared 0.96)

* We present first global HDI disaggregated at the municipality level (ADM2).

We + our partners are working on extensions (inequalities, other development
variables), further validation, and accessibility.

This agenda will play a critical role in designing policies both for LNOB and to
respond to the global challenges of the Anthropocene.
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merge M user
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