
The changing nature of work and inequality in Brazil (2003–19)

Sergio Firpo (Insper) Alysson Portella (Insper) Flavio Riva (FGV) Giovanna Ubida (Insper)

Presented at WIDER Development Conference Bogotá, Oct. 07, 2022

Earnings Inequality in Brazil in the 21st Century

Changes in earnings inequality in Brazil:

- Increased schooling and change in returns (Barros et al, 2010)
- Minimum wage (Engbom and Moser, 2022; Haanwinckel, 2020)
- Experience premium (Ferreira et al, 2021)
- Reduction in "gaps": Across firms; formality, regional, gender, racial (Alvarez, et al, 2018; Ulyssea, 2018; Dix-Carneiro and Kovak, 2017; Morchio and Moser, 2020; Gerard et al 2021)

What was the role of occupations?

Objectives:

- Document shifts in the employment structure in Brazil
- Evaluate how occupations and task content affect earnings polarization and inequality changes
- Contrast the importance of task content with other factors

Main findings

- Strong association between occupations average earnings and their task content
 - Between-jobs inequality account for half of overall inequality
- Some evidence of earnings polarization, but not employment polarization
 - More related to pro-poor and pro-rich growth rather than polarization itself
- RTI and inequality:
 - Composition effect: inequality reducing in the first period, enhancing in the second
 - Structure effect: Null or reduction in inequality
 - Overall RTI effect small compared to education and other factors

Outline

Data

Methodology

The Brazilian Context

Polarization in Brazil? Not really

Gini: Aggregate RIF Decomposition

Data

Brazilian National Household Survey (PNAD and PNADC)

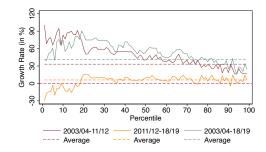
- Nationally representative
- 2003-2019, with focus on 2003/04, 2012/13 and 2018/19
- Workers in the formal and informal sectors
- 15-64 years old, male and female, rural and urban employment

Brazilian Occupation Classification

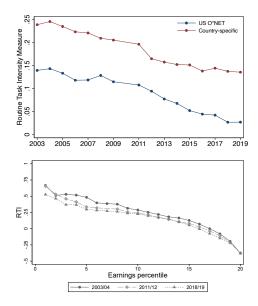
- Use ISCO-88 classification
- Taks content based on O*NET (2003) and Lewandowski et. al. (2019, 2020)
- Task content from Brazil relies on extrapolation from other countries

Methodology

Three different exercises:


- Employment and earnings polarization
 - Goos and Manning (2007); Sebastian (2018) Details
- Importance of occupations in overall inequality
 - Shappley Decomposition (Shorrocks, 2013; Gradin and Schotte, 2020) Details
- Decomposition of changes in inequality on structure and composition effects

RIF Decomposition (Firpo et al, 2018) Details


The Brazilian Context: Changes in inequality

	Inte	r-quantile ra	atios		Su	mmary indi	ces
	2003/04	2011/12	2018/19		2003/04	2011/12	2018/19
ln(q90)-ln(q10)	2.46	2.04	2.31	Var (log earn)	0.966	0.769	0.892
ln(q90)-ln(q50)	1.36	1.16	1.18	Gini (log earn)	0.106	0.085	0.089
ln(q50)-ln(q10)	1.10	0.88	1.12	Gini (earn)	0.536	0.485	0.493

Table: Inter-quantile ratios and summary inequality indices

The Brazilian Context: Changes in RTI

Polarization: Earnings as independent variable

	Log char	nge in employm	ent share	Change in log mean earnings				
	(1) 2003/04-	(2) 2011/12–	(3) 2003/04–	(4) 2003/04-	(5) 2011/12–	(6) 2003/04-		
	2011/12	2018/19	2018/19	2003/04	2018/19	2018/19		
Panel A: Lagged earnings								
(Log) mean earnings (t-1)	1.069**	-2.722**	-0.909	-0.631***	-2.625***	-2.384***		
	(0.407)	(1.344)	(1.054)	(0.117)	(0.735)	(0.512)		
Sq. (log) mean earnings (t-1)	-0.084**	0.224*	0.086	0.044***	0.207***	0.189***		
	(0.039)	(0.117)	(0.099)	(0.011)	(0.062)	(0.046)		
Constant	-3.294***	8.074**	2.237	2.409***	8.270***	7.706***		
	(1.026)	(3.815)	(2.741)	(0.300)	(2.178)	(1.417)		
Observations	78	78	78	78	78	78		
Adjusted R ²	0.179	0.059	-0.015	0.647	0.422	0.669		

Occupation Percentile

Polarization: RTI as independent variable

	Log chan	ge in employm	ent share	Chang	e in log mean e	earnings
	(1) 2003/04– 2011/12	(2) 2011/12- 2018/19	(3) 2003/04– 2018/19	(4) 2003/04- 2011/12	(5) 2011/12– 2018/19	(6) 2003/04- 2018/19
Panel B: RTI - O*	NET measures	5				
O*NET RTI	-0.149* (0.075)	0.034 (0.104)	-0.050 (0.122)	0.153*** (0.024)	0.027 (0.049)	0.180*** (0.061)
Sq. O*NET RTI	-0.161 (0.257)	0.366 (0.256)	0.067 (0.306)	0.128** (0.056)	0.277 (0.228)	0.405 (0.265)
Constant	0.141 (0.122)	-0.229 [*] (0.121)	-0.122 (0.166)	0.227*** (0.022)	0.038 (0.086)	0.264*** (0.092)
Observations Adjusted R ²	78 0.019	78 0.045	78 -0.025	78 0.540	78 0.118	78 0.317
Panel C: RTI cour	ntry-specific me	easures				
RTI	-0.161** (0.075)	-0.028 (0.141)	-0.189 (0.166)	0.168*** (0.030)	0.127 (0.079)	0.296*** (0.090)
Sq. RTI	-0.310** (0.139)	0.110 (0.285)	-0.199 (0.285)	0.080 (0.084)	0.431** (0.195)	0.510* (0.258)
Constant	0.083 (0.063)	-0.096 (0.065)	-0.014 (0.086)	0.273*** (0.027)	0.006 (0.033)	0.278*** (0.049)
Observations Adjusted R ²	78 0.182	78 -0.024	78 0.017	78 0.387	78 0.282	78 0.430

Between- and Within-Occupation Inequality

		Actual		Sł	ares consta	ant	Means constant			
	2003/04	2011/12	2018/19	2003/04	2011/12	2018/19	2003/04	2011/12	2018/19	
Panel A: Gini index decomposit	ion									
Gini (G)	.537	.485	.493	.537	.49	.497	.537	.508	.507	
Between-occupation (B)	.251	.215	.216	.251	.192	.201	.251	.222	.225	
% (B/G)	46.8	44.2	43.7	46.8	39.2	40.4	46.8	43.67	44.45	
Within-occupation (W)	.286	.271	.278	.286	.298	.296	.286	.286	.282	
% (W/G)	53.2	55.8	56.3	53.2	60.8	59.6	53.2	56.3	55.6	
Panel B: Concentration index b	ased on R	FI and Gini	index betw	een occupa	ations					
Gini Between-occupations (B)	.391	.322	.313	.391	.337	.316	.391	.384	.372	
Concentration index										
RTI (country-specific) (C)	.362	.294	.278	.362	.313	.277	.362	.334	.321	
% (C/B)	92.4	91.4	88.7	92.4	92.8	87.5	92.4	87	86.3	
RTI (O*NET) (O)	.357	.287	.288	.357	.305	.298	.357	.33	.317	
% (O/B)	91.1	89.4	92.1	91.1	90.5	94.3	91.1	85.9	85.3	

Table: Gini index decomposed into inequality between and within occupations

RIF Decomposition

Table: RIF Decomposition of Gini (×100)

	Country-specific RTI								O*NET RTI							
	(1) 2003/04-2011/12		(2) 2011/12-2018/19		(3) 2011/12-2018/19		(4) 2003/04-2011/12		(5) 2011/12-2018/19		(6) 2011/12-2018/19					
Overall																
Gini, period 1	44.72***	(0.14)	46.94***	(0.17)	46.94***	(0.17)	44.72***	(0.14)	46.94***	(0.17)	46.94***	(0.17)				
Counterfactual	49.78***	(0.12)	47.18***	(0.19)	51.63***	(0.14)	49.67***	(0.12)	47.17***	(0.18)	51.65***	(0.14)				
Gini, period 2	49.76***	(0.10)	44.72***	(0.14)	49.76***	(0.10)	49.76***	(0.10)	44.72***	(0.14)	49.76***	(0.10)				
Difference	-5.04***	(0.16)	2.22***	(0.23)	-2.82***	(0.21)	-5.04***	(0.16)	2.22***	(0.23)	-2.82***	(0.21)				
Total composition	0.02	(0.07)	2.46***	(0.09)	1.87***	(0.10)	-0.08	(0.07)	2.45***	(0.08)	1.89***	(0.10)				
Pure composition	1.16***	(0.08)	4.05***	(0.10)	6.74***	(0.15)	1.03***	(0.08)	4.05***	(0.10)	6.70***	(0.15)				
Specif. error	-1.14***	(0.05)	-1.59***	(0.05)	-4.86***	(0.10)	-1.11***	(0.05)	-1.60***	(0.05)	-4.80***	(0.10)				
Total structure	-5.06***	(0.17)	-0.24	(0.25)	-4.69***	(0.23)	-4.96***	(0.17)	-0.23	(0.24)	-4.71***	(0.23)				
Pure structure	-5.08***	(0.17)	-0.18	(0.25)	-4.60***	(0.23)	-4.95***	(0.16)	-0.22	(0.24)	-4.64***	(0.23)				
Rwg. error	0.02**	(0.01)	-0.06***	(0.01)	-0.09***	(0.02)	-0.00	(0.01)	-0.01	(0.01)	-0.07***	(0.02)				

Gini: Detailed RIF Decomposition

			Country-sp	ecific RT	I	O*NET RTI							
		(1) (2) 2003/04-2011/12 2011/12-2018			(3		(4) 2003/04-2011/12		(5) 2011/12-2018/19		(6) 2011/12-2018/19		
D	2003/04-	2011/12	2011/12-	2018/19	2011/12-	2018/19	2003/04-	2011/12	2011/12-	2018/19	2011/12-	2018/19	
Pure composition	1 07***	(0.00)	0.00111	(0.00)	C 05***	(0.1.4)		(0.00)	0.0.000	(0.00)		(0.10)	
Education	1.87***	(0.06)	2.88***	(0.08)	6.05***	(0.14)	1.73***	(0.06)	2.64***	(0.08)	5.77***	(0.13)	
Age	0.18***	(0.02)	0.28***	(0.02)	0.37***	(0.03)	0.17***	(0.02)	0.27***	(0.02)	0.34***	(0.03)	
Gender	-0.05***	(0.01)	-0.09***	(0.01)	-0.12***	(0.01)	-0.04***	(0.01)	-0.09***	(0.01)	-0.12***	(0.01)	
Race	0.07***	(0.01)	-0.02**	(0.01)	0.15***	(0.03)	0.08***	(0.01)	-0.01	(0.01)	0.17***	(0.03)	
Formality	-0.73***	(0.03)	0.60***	(0.05)	0.01	(0.06)	-0.80***	(0.03)	0.58***	(0.04)	-0.05	(0.06)	
RTI	-0.19***	(0.03)	0.41***	(0.03)	0.27***	(0.04)	-0.11***	(0.03)	0.67***	(0.03)	0.59***	(0.04)	
Specif. error													
Education	-2.86***	(0.10)	-3.38***	(0.17)	-8.00***	(0.19)	-2.89***	(0.10)	-3.47***	(0.16)	-8.11***	(0.21)	
Age	-0.18***	(0.04)	0.02	(0.06)	-0.39***	(0.10)	-0.19***	(0.04)	-0.02	(0.06)	-0.42***	(0.10)	
Gender	-0.01	(0.04)	0.41***	(0.07)	0.45***	(0.08)	0.02	(0.04)	0.40***	(0.06)	0.50***	(0.08)	
Race	-0.13***	(0.05)	-0.26***	(0.07)	0.15	(0.12)	-0.15***	(0.04)	-0.27***	(0.07)	0.08	(0.12)	
Formality	-0.43***	(0.04)	-1.32***	(0.06)	-1.69***	(0.09)	-0.42***	(0.03)	-1.28***	(0.06)	-1.67***	(0.09)	
RTI	-0.05	(0.03)	-0.23***	(0.06)	-0.65***	(0.08)	0.33***	(0.04)	0.28***	(0.06)	0.53***	(0.09)	
Constant	2.52***	(0.12)	3.18***	(0.19)	5.28***	(0.24)	2.19***	(0.13)	2.77***	(0.19)	4.28***	(0.29)	
Pure structure													
Education	0.06	(0.30)	1.05***	(0.37)	1.63***	(0.31)	-0.04	(0.29)	1.09***	(0.36)	1.43***	(0.32)	
Age	0.59***	(0.17)	0.08	(0.25)	0.98***	(0.23)	0.57***	(0.17)	0.16	(0.24)	1.03***	(0.23)	
Gender	-0.21	(0.16)	-0.48*	(0.26)	-0.75***	(0.23)	-0.12	(0.16)	-0.50**	(0.25)	-0.71***	(0.23)	
Race	-1.10***	(0.17)	-0.13	(0.21)	-1.85***	(0.24)	-1.03***	(0.17)	-0.13	(0.21)	-1.75***	(0.23)	
Formality	0.67***	(0.16)	0.20	(0.26)	0.70***	(0.25)	0.68***	(0.16)	-0.11	(0.26)	0.40	(0.25)	
RTI	-0.17	(0.15)	0.17	(0.20)	0.28	(0.18)	-1.44***	(0.12)	0.98***	(0.16)	-0.43***	(0.16)	
Constant	-4.93***	(0.49)	-1.07**	(0.53)	-5.59***	(0.54)	-3.58***	(0.51)	-1.71***	(0.53)	-4.61***	(0.58)	

Aggregate decomposition by quantile: 2003/04 - 2011/12

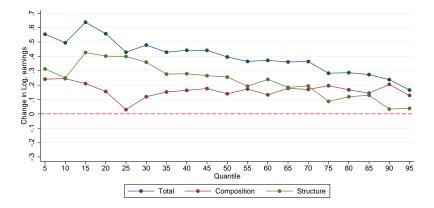


Figure: 2003/04 and 2012/13

Aggregate decomposition by quantile: 2011/12 - 2018/19

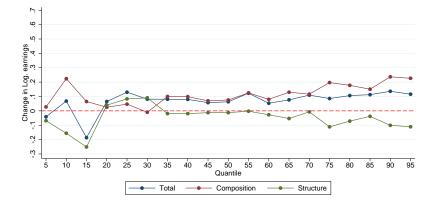


Figure: 2011/12 and 2018/19

Detailed Decomposition: Pure Structure Effects, 2003/04 and 2011/12

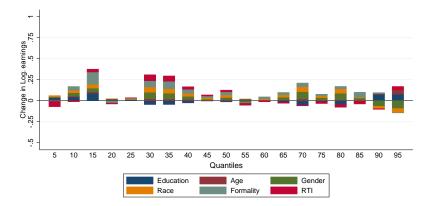
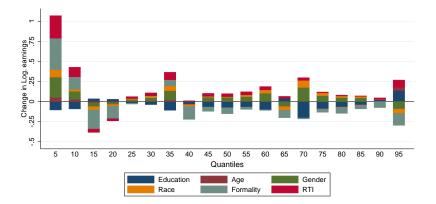
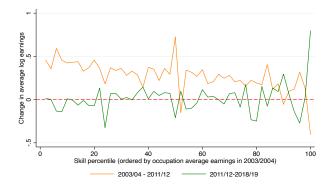


Figure: 2003/04 and 2011/12

Detailed Decomposition: Pure Structure Effects, 2011/12 and 2018/19




Figure: 2011/12 and 2018/19

Conclusion

No evidence of earnings or employment polarization
 More like pro-poor and pro-rich growth

- Reduction in inequality driven by structure effects
- Increase in inequality driven by composition effects
- Small overall role of RTI:
 - Reduction in RTI increased inequality between 2003 and 2019 (composition)
 - Structure effects: inequality-reducing in the first period and inequality-enhancing in the second

Earnings Growth by Occupation Percentile

Back

Polarization: Methodology

- Individuals aggregated at the three-digit level of ISCO-88
- Regress changes in log employment shares and log mean weekly earning on initial log mean weekly earnings and its square:

$$\Delta \log \left(y_{j,t} \right) = \varphi_0 + \varphi_1 \log \left(x_{j,t-1} \right) + \varphi_2 \log \left(x_{j,t-1} \right)^2 + \varepsilon_{j,t}$$

- Similarly, replace log of mean earnings and its square with initial RTI and its square (Sebastian, 2018).
- Polarization implies hollowing middle: squared term should be positive!

Back

Shorrocks Decomposition: Methodology

Shorrocks decomposition: overall Gini index into a between and within occupation

$$G = G_B + G_W$$

$$G_B = rac{1}{2} \left[G \left(y_b
ight) + G - G \left(y_w
ight)
ight]$$

 $G_W = rac{1}{2} \left[G \left(y_w
ight) + G - G \left(y_b
ight)
ight]$

- y_b: earnings of all workers replaced by the average of the occupation
- y_w: earnings vector is re-scaled so occupations all have the same average earnings.

•
$$G = G(y)$$

RIF Decomposition: Methodology

Reweighting approach

$$\begin{aligned} \Delta_o^{\mathsf{v}} &= \Delta_S^{\mathsf{v}} + \Delta_X^{\mathsf{v}} \\ &= (\gamma_1 - \gamma_c) X_{i1} + \gamma_c \left(X_{i1} - X_{ic} \right) + \gamma_0 \left(X_{ic} - X_{i0} \right) + (\gamma_c - \gamma_0) X_{ic} \\ &= \Delta_{S,\rho}^{\mathsf{v}} + \Delta_{S,e}^{\mathsf{v}} + \Delta_{X,\rho}^{\mathsf{v}} + \Delta_{X,e}^{\mathsf{v}} \end{aligned}$$

Back