Can Technology Overcome Social Disadvantage of School Children's Learning Outcomes?

Evidence from a Large-Scale Experiment in India

Gopal Naik; Chetan Chitre; Manaswini Bhalla and Jothsna Rajan

Indian Institute of Management, Bangalore

Table of Contents

Introduction
Context and Experiment Design
Estimation
Results
Student Level - Overall
Student Level - Gender Gap
Student Level - Social Disadvantage
Student Level - Gender + Social Disadvantage
School Level
Summarizing the Results

Table of Contents

Introduction

Context and Experiment Design

Estimation

Results

Summarizing the Results

Motivation

Motivation

- Universal Primary Education as part of MDG - enrolment rate more than 96% in India

Motivation

- Universal Primary Education as part of MDG - enrolment rate more than 96% in India
- Quality of education remains a concern -

Among children enroled in grade 8 in India (ASER, 2014)

- about 30% could not read level II text
- 63% found it difficult to simple divisions

Motivation

- Universal Primary Education as part of MDG - enrolment rate more than 96% in India
- Quality of education remains a concern -

Among children enroled in grade 8 in India (ASER, 2014)

- about 30% could not read level II text
- 63% found it difficult to simple divisions
- Issues - Teacher absenteeism; Lack of adequate teacher training; Lack of physical infrastructure

Motivation

- Universal Primary Education as part of MDG - enrolment rate more than 96% in India
- Quality of education remains a concern -

Among children enroled in grade 8 in India (ASER, 2014)
\square about 30% could not read level II text

- 63% found it difficult to simple divisions
- Issues - Teacher absenteeism; Lack of adequate teacher training; Lack of physical infrastructure
- Socio-economic disadvantage along caste lines is also reflected in low education performance of children

Use of Technology

Use of Technology

- Technology (providing computers to schools) as a solution.

Use of Technology

- Technology (providing computers to schools) as a solution.
- Experience with use of technology around the world shows mixed results (Israel, Colombia, India)

Use of Technology

- Technology (providing computers to schools) as a solution.
- Experience with use of technology around the world shows mixed results (Israel, Colombia, India)
- In Karnataka - EDUSAT, Keli Kali, CALC, Mahiti Sindhu, ICT Phase I, II and III

Use of Technology

- Technology (providing computers to schools) as a solution.
- Experience with use of technology around the world shows mixed results (Israel, Colombia, India)
- In Karnataka - EDUSAT, Keli Kali, CALC, Mahiti Sindhu, ICT Phase I, II and III
- Technology and change in pedagogy has to go together

Use of Technology

- Technology (providing computers to schools) as a solution.
- Experience with use of technology around the world shows mixed results (Israel, Colombia, India)
- In Karnataka - EDUSAT, Keli Kali, CALC, Mahiti Sindhu, ICT Phase I, II and III
- Technology and change in pedagogy has to go together
- Can technology mitigate problems of discriminatory treatment in classrooms?

Questions ...

Questions ...

- Does teaching input delivered by use of technology improve student performance?

Questions ...

- Does teaching input delivered by use of technology improve student performance?
- Is the impact neutral across various social and gender groups?

Intervention

Intervention

- Use of satellite transmission to deliver teaching input to 1000 government and government aided schools in rural areas of

Karnataka

Intervention

- Use of satellite transmission to deliver teaching input to 1000 government and government aided schools in rural areas of

Karnataka

- Schools spread over 18 districts across the State in 36 Taluks

Intervention

- Use of satellite transmission to deliver teaching input to 1000 government and government aided schools in rural areas of Karnataka
- Schools spread over 18 districts across the State in 36 Taluks
- Covers Karnataka State Board syllabus in English (grammar), Maths and Science for Grades 5 to 10

Intervention

- Use of satellite transmission to deliver teaching input to 1000 government and government aided schools in rural areas of Karnataka
- Schools spread over 18 districts across the State in 36 Taluks
- Covers Karnataka State Board syllabus in English (grammar), Maths and Science for Grades 5 to 10
- Randomized control trial design

Interim Results

Interim Results

- Improvement in performance at SSLC exams

Interim Results

- Improvement in performance at SSLC exams
- Improvement in performance among the socially disadvantaged sections

Interim Results

- Improvement in performance at SSLC exams
- Improvement in performance among the socially disadvantaged sections
- Among the socially disadvantaged sections, improvement in performance of girls

Interim Results

- Improvement in performance at SSLC exams
- Improvement in performance among the socially disadvantaged sections
- Among the socially disadvantaged sections, improvement in performance of girls
- At school level - schools around the median performance get maximum benefit.

Table of Contents

Introduction
Context and Experiment Design

Estimation

Results

Summarizing the Results

School Education in Karnataka

School Education in Karnataka

- Karnataka one of the better performing states in the country
\square Per Capita income 14\% higher than national average
- Literacy rate 75.4% against national average of 73%
\square Enrollment rates of 98.3% as against all India rate of 96.7%

School Education in Karnataka

- Karnataka one of the better performing states in the country
\square Per Capita income 14\% higher than national average
- Literacy rate 75.4% against national average of 73%
\square Enrollment rates of 98.3% as against all India rate of 96.7%
- 75,000+ schools out of which $14000+$ have secondary section.

School Education in Karnataka

- Karnataka one of the better performing states in the country
\square Per Capita income 14\% higher than national average
- Literacy rate 75.4% against national average of 73%
\square Enrollment rates of 98.3% as against all India rate of 96.7%
- 75,000+ schools out of which $14000+$ have secondary section.
- 10.1 million students in 2014-15

School Education in Karnataka

- Karnataka one of the better performing states in the country
\square Per Capita income 14\% higher than national average
- Literacy rate 75.4% against national average of 73%
\square Enrollment rates of 98.3% as against all India rate of 96.7%
- 75,000+ schools out of which $14000+$ have secondary section.
- 10.1 million students in 2014-15
- However, poor performance on quality of education compared
to national standards

Learning Levels of Children in Class VIII

Table: Learning Levels of Children in Class VIII

Reading Levels						
	Not even letter	Letter	Word	Std I text	Std II text	Total
India	1.8	4.5	6.2	12.8	74.6	100
Karnataka	2.7	3.7	6.5	16.6	70.6	100
Arithmetic						
	Recognize	Numbers	Can Subtract	Can Divide	Total	
	None	$1-9$	$10-99$			
India	1.3	5.4	26.1	23.2	44.1	100
Karnataka	1.1	2.3	31.2	28.4	37.0	100

Caste and Gender Divide in Schools in Karnataka

Caste Composition of Grade - 1

8.11%	11.53%	
19.15%	25.73%	

Caste and Gender Divide in Schools in Karnataka

Caste-wise School Choice

Caste and Gender Divide in Schools in Karnataka

Gender-wise School Choice

Caste and Gender Divide in Schools in Karnataka

Total Marks - 625

Average Total Score in SSLC Exam

Experiment Design

Experiment Design

- Live satellite transmission of lectures to 1000 government and government aided schools in Karnataka

Experiment Design

- Live satellite transmission of lectures to 1000 government and government aided schools in Karnataka
- Lectures delivered by trained and experienced teachers using multi-media content

Experiment Design

Figure: Intervention Design

Experiment Design

Figure: SAMIE Class

Experiment Design

Experiment Design

- Covers syllabus for grades V to X

Experiment Design

- Covers syllabus for grades V to X
- 40 minutes of lecture followed by 5 minutes for interactive session

Experiment Design

Experiment Design

- Complete hardware kit provided with dual power back-ups

Experiment Design

- Complete hardware kit provided with dual power back-ups
- Minimal technical operations required at school level

Experiment Design

- Complete hardware kit provided with dual power back-ups
- Minimal technical operations required at school level
- Automated + manual confirmation of class-run status

Experiment Design

- Complete hardware kit provided with dual power back-ups
- Minimal technical operations required at school level
- Automated + manual confirmation of class-run status
- Hence high rate of compliance

Sampling and Randomization

Sampling and Randomization

- Stratification at district level and randomization at taluk level

Sampling and Randomization

- Stratification at district level and randomization at taluk level
- Measure of outcomes at school and student level

Karnataka

Selected Districts

Intervention and Comparison Taluks

Sampling and Randomization

Sampling and Randomization

- Covers 72 taluks in 18 least developed districts

Sampling and Randomization

- Covers 72 taluks in 18 least developed districts
- Covers all government and government aided schools in selected taluk that have -
\square Closed classroom in good condition
\square Working electricity connection
\square Minimum average of 20 students in each class

Sampling and Randomization

- Covers 72 taluks in 18 least developed districts
- Covers all government and government aided schools in selected taluk that have -
\square Closed classroom in good condition
\square Working electricity connection
\square Minimum average of 20 students in each class
- 1000 schools in intervention group; 823 schools in comparison group

Table of Contents

Introduction
 Context and Experiment Design

Estimation

Results

Summarizing the Results

Interim Evaluation

Interim Evaluation

- Intervention started in November, 2014

Interim Evaluation

- Intervention started in November, 2014
- Interim evaluation after 3 months of intervention in AY 2014-15

Interim Evaluation

- Intervention started in November, 2014
- Interim evaluation after 3 months of intervention in AY 2014-15
- Evaluation of performance of two cohorts in Grade 10-(AY 2013-14 and AY 2014-15)

Interim Evaluation

- Intervention started in November, 2014
- Interim evaluation after 3 months of intervention in AY 2014-15
- Evaluation of performance of two cohorts in Grade 10 - (AY 2013-14 and AY 2014-15)
- Schools covered in present study - 659 from Intervention group and 587 from Control group

Schools Covered

	Intervention	Comparison
Schools in Experiment Group	1000	823
Students in Experiment Group		
Schools with Secondary Sections		
Schools in Experiment Group	659	587
Students in Experiment Group in 2014	41240	36804
Students in Experiment Group in 2015	42958	38127

Comparison of Schools with Secondary Section

Table: School Characteristics

Control Mean Treatment Mean t-statistic p-value

Total Enrolment	211.10	204.78	0.83	0.40
Total Classrooms	5.27	5.45	-1.06	0.29
Working Teachers	8.36	8.32	0.27	0.79
Pupil-Teacher-Ratio	26.30	25.16	1.24	0.22
Pupil-Classroom-Ratio	44.72	40.79	3.31	0.00
Infrastructure Score	7.24	7.32	-1.27	0.20

Comparison of Schools with Secondary Section

Table: Teachers in Secondary Section

	Control Mean	Treatment Mean	t-statistic	p-value
Number of Teachers	8.78	8.76	0.08	0.94
Number of Female Teachers	2.43	2.42	0.06	0.95
Academic Qualification Score	13.47	13.64	-1.25	0.21
Professional Qualification Score	1.89	1.91	-1.05	0.29
Proportion of Female Teachers	0.26	0.26	0.27	0.78
Proportion of OBC Teachers	0.48	0.50	-1.16	0.25
Proportion of SC Teachers	0.17	0.17	0.26	0.79
Proportion of ST Teachers	0.07	0.07	-0.80	0.43

Comparison of Schools with Secondary Section

Control Mean Treatment Mean t-statistic p-value

Student Demographics in AY 2013-14 - Grade 10

Proportion of Girls	0.47	0.47	-0.09	0.93
Proportion of OBC	0.44	0.47	-1.42	0.16
Proportion of SC	0.23	0.23	-0.20	0.84
Proportion of ST	0.11	0.13	-3.88	0.00
	Student Demographics in AY 2014-15- Grade 10			
		0.47	0.48	-1.29
Proportion of Girls	0.48	0.49	-0.33	0.20
Proportion of OBC	0.24	0.24	-0.10	0.92
Proportion of SC	0.11	0.14	-4.02	0.00
Proportion of ST				

Comparison of Schools with Secondary Section

Table: SSLC Exam Performance in April 2014

	Control Mean	Treatment Mean	t-statistic	p-value
		62.70	62.58	0.05
No. of students in grade 10	54.12	54.56	-0.22	0.83
No. of students who passed the exam	47.39	47.65	-0.50	0.62
English	45.38	46.13	-1.54	0.12
Maths	49.50	49.59	-0.19	0.85
Science	60.42	61.06	-1.05	0.29
Social Science	334.04	338.16	-1.42	0.16
Total Score				

1) No. of Students measures average class size in each school in grade 10
2) No. of students who passed the exam is the average no. of students from each school
3) The other variables are the average scores by students of a school in respective subjects.

Table of Contents

Introduction

Context and Experiment Design

Estimation

Results
Student Level - Overall
Student Level - Gender Gap
Student Level - Social Disadvantage
Student Level - Gender + Social Disadvantage
School Level

Table of Contents

Introduction
Context and Experiment Design
Estimation
Results
Student Level - Overall
Student Level - Gender Gap
Student Level - Social Disadvantage
Student Level - Gender + Social Disadvantage
School Level
Summarizing the Results

Student Level - Overall

	Dependent variable:		
	English	Maths	Science
	(1)	(2)	(3)
Treatment	-0.044	0.707	0.082
	(1.020)	(0.984)	(0.954)
Year(2015)	$-7.050^{* * *}$	$-1.790^{* *}$	$-5.850^{* * *}$
	(0.920)	(0.871)	(0.863)
Treatment:Year(2015)	0.439	-0.201	0.617
	(1.280)	(1.340)	(1.320)
Constant	$48.400^{* * *}$	$47.300^{* * *}$	$50.000^{* * *}$
	(2.120)	(0.917)	(1.020)
Observations	159,129	159,129	159,129
R^{2}	0.062	0.025	0.062
Note:	$\mathrm{p}<0.1 ;{ }^{* *} \mathrm{p}<0.05 ;{ }^{* * *} \mathrm{p}<0.01$		

All regressions include district dummies. Figures in brackets are standard errors and are clustered at taluk level

Table of Contents

Introduction
Context and Experiment Design
Estimation
Results

Student Level - Overall

Student Level - Gender Gap
Student Level - Social Disadvantage
Student Level - Gender + Social Disadvantage
School Level
Summarizing the Results

	Dependent variable:		
	English (1)	Maths (2)	Science (3)
Treatment	-0.094	-0.024	-0.016
	(0.235)	(0.183)	(0.162)
Year(2015)	$-0.717^{* *}$	-0.189	$-0.923^{* * *}$
	(0.142)	(0.121)	(0.122)
Girls	2.590***	2.210***	$2.400^{* * *}$
	(0.343)	(0.263)	(0.254)
Treatment:Year(2015)	0.166	0.203	0.253
	(0.226)	(0.189)	(0.169)
Treatment:Girls	0.130	0.097	-0.015
	(0.470)	(0.359)	(0.333)
Year(2015):Girls	0.256	0.130	1.050***
	(0.261)	(0.242)	(0.302)
Treatment:Year(2015):Girls	-0.319	-0.495	-0.490
	(0.386)	(0.329)	(0.367)
Constant	$1.410^{* * *}$	0.992***	$1.270^{* * *}$
	(0.266)	(0.216)	(0.242)
Observations	159,129	159,129	159,129
R^{2}	0.248	0.257	0.283
Note:	* $\mathrm{p}<0.1$	${ }^{* *} \mathrm{p}<0.05$	${ }^{* * *} \mathrm{p}<0.01$

All regressions include district dummies and controls school characteristics. Figures in brackets are standard errors and are clustered at taluk level.

	Dependent variable:			
	English (1)	Maths (2)	Science (3)	
Treatment	$\begin{aligned} & -0.094 \\ & (0.235) \end{aligned}$	$\begin{aligned} & -0.024 \\ & (0.183) \end{aligned}$	$\begin{aligned} & -0.016 \\ & (0.162) \end{aligned}$	Intervention improves the gap
Year(2015)	$\begin{gathered} -0.717^{* * *} \\ (0.142) \end{gathered}$	$\begin{aligned} & -0.189 \\ & (0.121) \end{aligned}$	$\begin{gathered} -0.923^{* * *} \\ (0.122) \end{gathered}$	in learning outcomes in favor
Girls		$\begin{gathered} 2.210^{* * *} \\ (0.263) \end{gathered}$	$\begin{gathered} 2.400^{* * *} \\ (0.254) \end{gathered}$	of Boys
Treatment:Year(2015)	$\begin{gathered} 0.166 \\ (0.226) \end{gathered}$	$\begin{gathered} 0.203 \\ (0.189) \end{gathered}$	$\begin{gathered} 0.253 \\ (0.169) \end{gathered}$	
Treatment:Girls	$\begin{gathered} 0.130 \\ (0.470) \end{gathered}$	$\begin{gathered} 0.097 \\ (0.359) \end{gathered}$	$\begin{aligned} & -0.015 \\ & (0.333) \end{aligned}$	
Year(2015):Girls	$\begin{gathered} 0.256 \\ (0.261) \end{gathered}$	$\begin{gathered} 0.130 \\ (0.242) \end{gathered}$	$\begin{aligned} & 1.050^{* * *} \\ & (0.302) \end{aligned}$	
Treatment:Year(2015):Girls			$\begin{array}{r} -0.490 \\ (0.367) \\ \hline \end{array}$	
Constant		$\begin{gathered} 0.992^{* * *} \\ (0.216) \\ \hline \end{gathered}$	$\begin{aligned} & 1.270^{* * *} \\ & (0.242) \\ & \hline \end{aligned}$	All regressions include district dummies and controls school characteristics. Figures in brackets
Observations	159,129	159,129	159,129	are standard errors and are clustered at taluk level.
R^{2}	0.248	0.257	0.283	
Note:	* $\mathrm{p}<0$	** $\mathrm{p}<0.05$	${ }^{* *} \mathrm{p}<0.01$	

Table of Contents

Introduction
Context and Experiment Design
Estimation
Results
Student Level - Overall
Student Level - Gender Gap
Student Level - Social Disadvantage
Student Level - Gender + Social Disadvantage
School Level
Summarizing the Results

Social Disadvantage

Social Disadvantage

- Does belonging to socially disadvantaged group lead to a learning disadvantage (at baseline)?

Social Disadvantage

- Does belonging to socially disadvantaged group lead to a learning disadvantage (at baseline)?
- Does Intervention help in narrowing the social divide in terms of learning outcomes?

Social Disadvantage

- Does belonging to socially disadvantaged group lead to a learning disadvantage (at baseline)?
- Does Intervention help in narrowing the social divide in terms of learning outcomes?
- Does Intervention improve the learning outcomes of socially disadvantaged groups?

Social Disadvantage and Learning Outcomes (I)

	Dependent variable:		
	English	Maths	Science
	(1)	(2)	(3)
Treatment	0.144	0.310	0.146
	(0.376)	(0.307)	(0.268)
OBC	$-0.982^{* * *}$	$-0.613^{* * *}$	$-0.598^{* * *}$
	(0.242)	(0.186)	(0.148)
SC	$-3.340^{* * *}$	$-3.630^{* * *}$	$-3.180^{* * *}$
	(0.381)	(0.346)	(0.261)
ST	$-3.740^{* * *}$	$-3.450^{* * *}$	$-3.310^{* * *}$
Treatment:OBC	(0.419)	(0.370)	(0.275)
	0.005	-0.243	-0.257
Treatment:SC	(0.476)	(0.392)	(0.353)
	-0.325	-0.345	-0.154
Treatment:ST	(0.571)	(0.511)	(0.430)
	-0.539	-0.542	0.088
	(0.567)	(0.506)	(0.431)
Note:	${ }^{*} \mathrm{p}<0.1 ;$	${ }^{* *} \mathrm{p}<0.05 ;{ }^{* * *} \mathrm{p}<0.01$	

Social Disadvantage and Learning Outcomes (I)

	Dependent variable:			
	English (1)	Maths (2)	Science (3)	
Treatment	$\begin{gathered} 0.144 \\ (0.376) \end{gathered}$	$\begin{gathered} 0.310 \\ (0.307) \end{gathered}$	$\begin{gathered} 0.146 \\ (0.268) \end{gathered}$	Does belonging to socially
OBC	$\begin{gathered} -0.982^{* * *} \\ (0.242) \end{gathered}$	$\begin{gathered} -0.613^{* * *} \\ (0.186) \end{gathered}$	$\begin{gathered} -0.598^{* * *} \\ (0.148) \end{gathered}$	disadvantaged group lead to
SC	$\begin{gathered} -3.340^{* * *} \\ (0.381) \end{gathered}$	$\begin{gathered} -3.630^{* * *} \\ (0.346) \end{gathered}$	$\begin{gathered} -3.180^{* * *} \\ (0.261) \end{gathered}$	a learning disadvantage (at baseline)?
ST	$\begin{gathered} -3.740^{* * *} \\ (0.419) \end{gathered}$	$\begin{gathered} -3.450^{* * *} \\ (0.370) \end{gathered}$	$\begin{gathered} -3.310^{* * *} \\ (0.275) \end{gathered}$	
Treatment:OBC	$\begin{gathered} 0.005 \\ (0.476) \end{gathered}$	$\begin{aligned} & -0.243 \\ & (0.392) \end{aligned}$	$\begin{aligned} & -0.257 \\ & (0.353) \end{aligned}$	
Treatment:SC	$\begin{aligned} & -0.325 \\ & (0.571) \end{aligned}$	$\begin{aligned} & -0.345 \\ & (0.511) \end{aligned}$	$\begin{aligned} & -0.154 \\ & (0.430) \end{aligned}$	
Treatment:ST	$\begin{aligned} & -0.539 \\ & (0.567) \end{aligned}$	$\begin{aligned} & -0.542 \\ & (0.506) \end{aligned}$	$\begin{gathered} 0.088 \\ (0.431) \end{gathered}$	

Social Disadvantage and Learning Outcomes (I)

	Dependent variable:			
	English (1)	Maths (2)	Science (3)	
Treatment	$\begin{gathered} 0.144 \\ (0.376) \end{gathered}$	$\begin{gathered} 0.310 \\ (0.307) \end{gathered}$	$\begin{gathered} 0.146 \\ (0.268) \end{gathered}$	Does belonging to socially
OBC	$\begin{gathered} -0.982^{* * *} \\ (0.242) \end{gathered}$	$\begin{gathered} -0.613^{* * *} \\ (0.186) \end{gathered}$	$\begin{gathered} -0.598^{* * *} \\ (0.148) \end{gathered}$	disadvantaged group lead to
SC	$\begin{gathered} -3.340^{* * *} \\ (0.381) \end{gathered}$	$\begin{gathered} -3.630^{* * *} \\ (0.346) \end{gathered}$	$\begin{gathered} -3.180^{* * *} \\ (0.261) \end{gathered}$	a learning disadvantage (at baseline)?
ST	$\begin{gathered} -3.740^{* * *} \\ (0.419) \end{gathered}$	$\begin{gathered} -3.450^{* * *} \\ (0.370) \end{gathered}$	$\begin{gathered} -3.310^{* * *} \\ (0.275) \end{gathered}$	Yes
Treatment:OBC	$\begin{gathered} 0.005 \\ (0.476) \end{gathered}$	$\begin{aligned} & -0.243 \\ & (0.392) \end{aligned}$	$\begin{aligned} & -0.257 \\ & (0.353) \end{aligned}$	
Treatment:SC	$\begin{aligned} & -0.325 \\ & (0.571) \end{aligned}$	$\begin{aligned} & -0.345 \\ & (0.511) \end{aligned}$	$\begin{aligned} & -0.154 \\ & (0.430) \end{aligned}$	
Treatment:ST	$\begin{aligned} & -0.539 \\ & (0.567) \end{aligned}$	$\begin{aligned} & -0.542 \\ & (0.506) \end{aligned}$	$\begin{gathered} 0.088 \\ (0.431) \end{gathered}$	
Note:	* $\mathrm{p}<0$; ${ }^{*} \mathrm{p}<0.05$	*** $\mathrm{p}<0.01$	

Social Disadvantage and Learning Outcomes (II)

	Dependent variable:		
	English (1)	Maths (2)	Science (3)
Year(2015)	$\begin{gathered} -1.010^{* * *} \\ (0.189) \end{gathered}$	$\begin{gathered} -0.552^{* * *} \\ (0.125) \end{gathered}$	$\begin{gathered} -0.646^{* * *} \\ (0.157) \end{gathered}$
Treatment:Year(2015)	$\begin{gathered} 0.152 \\ (0.283) \end{gathered}$	$\begin{gathered} 0.180 \\ (0.223) \end{gathered}$	$\begin{gathered} 0.146 \\ (0.224) \end{gathered}$
Year(2015): OBC	$\begin{aligned} & 0.435^{* *} \\ & (0.219) \end{aligned}$	$\begin{aligned} & 0.425^{* *} \\ & (0.193) \end{aligned}$	$\begin{aligned} & 0.299^{*} \\ & (0.158) \end{aligned}$
Year(2015):SC	$\begin{aligned} & 0.682^{* *} \\ & (0.300) \end{aligned}$	$\begin{aligned} & 0.646^{* *} \\ & (0.275) \end{aligned}$	$\begin{gathered} 0.167 \\ (0.289) \end{gathered}$
Year(2015):ST	$1.240^{* * *}$ (0.442)	$\begin{gathered} 1.360^{* * *} \\ (0.329) \end{gathered}$	$\begin{aligned} & 0.918^{* *} \\ & (0.381) \end{aligned}$
Treatment:Year(2015):OBC	$\begin{aligned} & -0.158 \\ & (0.321) \end{aligned}$	$\begin{aligned} & -0.239 \\ & (0.268) \end{aligned}$	-0.004 (0.254)
Treatment:Year(2015):SC	$\begin{aligned} & -0.072 \\ & (0.456) \end{aligned}$	$\begin{aligned} & -0.052 \\ & (0.412) \end{aligned}$	$\begin{aligned} & -0.057 \\ & (0.355) \end{aligned}$
Treatment:Year(2015):ST	$\begin{aligned} & -0.571 \\ & (0.564) \end{aligned}$	-0.821^{*} (0.432)	$\begin{aligned} & -0.893^{*} \\ & (0.528) \end{aligned}$
Note:	* $\mathrm{p}<0$	$1 ;{ }^{* *} \mathrm{p}<0.05$	${ }^{* * *} \mathrm{p}<0.01$

Social Disadvantage and Learning Outcomes (II)

	Dependent variable:		
	English	Maths	Science
	(1)	(2)	(3)
Year(2015)	$-1.010^{* * *}$	$-0.552^{* * *}$	$-0.646^{* * *}$
Treatment:Year(2015)	(0.189)	(0.125)	(0.157)
	0.152	0.180	0.146
Year(2015):OBC	(0.283)	(0.223)	(0.224)
	$0.435^{* *}$	$0.425^{* *}$	0.299^{*}
Year(2015):SC	(0.219)	(0.193)	(0.158)
Year(2015):ST	$0.682^{* *}$	$0.646^{* *}$	0.167
	(0.300)	(0.275)	(0.289)
Treatment:Year(2015):OBC	-0.158	-0.239	-0.004
Treatment:Year(2015):SC	(0.321)	(0.268)	(0.254)
Treatment:Year(2015):ST	-0.072	-0.052	-0.057
	(0.456)	(0.412)	(0.355)
Note:	-0.571	-0.821^{*}	-0.893^{*}
	(0.564)	(0.432)	(0.528)

Does Intervention help in narrowing the social divide in terms of learning outcomes?

Social Disadvantage and Learning Outcomes (II)

	Dependent variable:		
	English (1)	Maths (2)	Science (3)
Year(2015)	$\begin{gathered} -1.010^{* * *} \\ (0.189) \end{gathered}$	$\begin{gathered} -0.552^{* * *} \\ (0.125) \end{gathered}$	$\begin{gathered} -0.646^{* * *} \\ (0.157) \end{gathered}$
Treatment:Year(2015)	$\begin{gathered} 0.152 \\ (0.283) \end{gathered}$	$\begin{gathered} 0.180 \\ (0.223) \end{gathered}$	$\begin{gathered} 0.146 \\ (0.224) \end{gathered}$
Year(2015):OBC	$\begin{aligned} & 0.435^{* *} \\ & (0.219) \end{aligned}$	$\begin{aligned} & 0.425^{* *} \\ & (0.193) \end{aligned}$	$\begin{aligned} & 0.299^{*} \\ & (0.158) \end{aligned}$
Year(2015):SC	$\begin{aligned} & 0.682^{* *} \\ & (0.300) \end{aligned}$	$\begin{aligned} & 0.646^{* *} \\ & (0.275) \end{aligned}$	$\begin{gathered} 0.167 \\ (0.289) \end{gathered}$
Year(2015):ST	$\begin{gathered} 1.240^{* * *} \\ (0.442) \end{gathered}$	$\begin{gathered} 1.360^{* * *} \\ (0.329) \end{gathered}$	$\begin{aligned} & 0.918^{* *} \\ & (0.381) \end{aligned}$
Treatment:Year(2015):OBC	-0.158 (0.321)	$\begin{aligned} & -0.239 \\ & (0.268) \end{aligned}$	$\begin{aligned} & -0.004 \\ & (0.254) \end{aligned}$
Treatment:Year(2015):SC	$\begin{aligned} & -0.072 \\ & (0.456) \end{aligned}$	$\begin{aligned} & -0.052 \\ & (0.412) \end{aligned}$	$\begin{aligned} & -0.057 \\ & (0.355) \end{aligned}$
Treatment:Year(2015):ST	$\begin{aligned} & -0.571 \\ & (0.564) \end{aligned}$	-0.821^{*} (0.432)	$\begin{aligned} & -0.893^{*} \\ & (0.528) \\ & \hline \end{aligned}$
Note:	* $\mathrm{p}<0$; ${ }^{* *} \mathrm{p}<0.05$	${ }^{* * *} \mathrm{p}<0.01$

Does Intervention help in narrowing the social divide in terms of learning outcomes?

No

Social Disadvantage and Learning Outcomes (III)

	Dependent variable:		
	English	Maths	Science
	(1)	(2)	(3)
Year(2015)	$-1.010^{* * *}$	$-0.552^{* * *}$	$-0.646^{* * *}$
	(0.189)	(0.125)	(0.157)
Treatment:Year(2015)	0.152	0.180	0.146
	(0.283)	(0.223)	(0.224)
Year(2015):OBC	$0.435^{* *}$	$0.425^{* *}$	0.299^{*}
	(0.219)	(0.193)	(0.158)
Year(2015):SC	$0.682^{* *}$	$0.646^{* *}$	0.167
Year(2015):ST	(0.300)	(0.275)	(0.289)
	$1.240^{* * *}$	$1.360^{* * *}$	$0.918^{* *}$
Treatment:Year(2015):OBC	(0.442)	(0.329)	(0.381)
	-0.158	-0.239	-0.004
Treatment:Year(2015):SC	(0.321)	(0.268)	(0.254)
Treatment:Year(2015):ST	-0.072	-0.052	-0.057
	(0.456)	(0.412)	(0.355)
Note:	-0.571	-0.821^{*}	-0.893^{*}
	(0.564)	(0.432)	(0.528)
	${ }^{*} \mathrm{p}<0.1 ;$	${ }^{* *} \mathrm{p}<0.05 ;{ }^{* * *} \mathrm{p}<0.01$	

Social Disadvantage and Learning Outcomes (III)

	Dependent variable:		
	English	Maths	Science
	(1)	(2)	(3)
Year(2015)	$-1.010^{* * *}$	$-0.552^{* * *}$	$-0.646^{* * *}$
	(0.189)	(0.125)	(0.157)
Treatment:Year(2015)	0.152	0.180	0.146
	(0.283)	(0.223)	(0.224)
Year(2015):OBC	$0.435^{* *}$	$0.425^{* *}$	0.299^{*}
Year(2015):SC	(0.219)	(0.193)	(0.158)
Year(2015):ST	$0.682^{* *}$	$0.646^{* *}$	0.167
	(0.300)	(0.275)	(0.289)
Treatment:Year(2015):OBC	-0.158	-0.239	-0.004
	(0.321)	(0.268)	(0.254)
Treatment:Year(2015):SC	-0.072	-0.052	-0.057
Treatment:Year(2015):ST	(0.456)	(0.412)	(0.355)
	-0.571	$-0.821^{* *}$	-0.893^{*}
Note:	(0.564)	(0.432)	(0.528)

Does Intervention improve

 the learning outcomes within socially disadvantaged groups?
Social Disadvantage and Learning Outcomes (III)

	Dependent variable:		
	English	Maths	Science
	(1)	(2)	(3)
Year(2015)	$-1.010^{* * *}$	$-0.552^{* * *}$	$-0.646^{* * *}$
	(0.189)	(0.125)	(0.157)
Treatment:Year(2015)	0.152	0.180	0.146
	(0.283)	(0.223)	(0.224)
Year(2015):OBC	$0.435^{* *}$	$0.425^{* *}$	0.299^{*}
Year(2015):SC	(0.219)	(0.193)	(0.158)
Year(2015):ST	$0.682^{* *}$	$0.646^{* *}$	0.167
	(0.300)	(0.275)	(0.289)
Treatment:Year(2015):OBC	-0.158	-0.239	-0.004
Treatment:Year(2015):SC	$\left(0.240^{* * *}\right.$	$1.360^{* * *}$	$0.918^{* *}$
Treatment:Year(2015):ST	-0.072	(0.268)	(0.254)
	(0.456)	(0.442)	(0.329)
	-0.571	-0.821^{*}	-0.893^{*}
Note:	(0.564)	(0.432)	(0.528)

Does Intervention improve

 the learning outcomes within socially disadvantaged groups?| | English | Maths | Science |
| :--- | :---: | :---: | :---: |
| OBC | | | \checkmark |
| SC | \checkmark | \checkmark | \checkmark |
| ST | | | |

Table of Contents

Introduction
Context and Experiment Design
Estimation
Results
Student Level - Overall
Student Level - Gender Gap
Student Level - Social Disadvantage
Student Level - Gender + Social Disadvantage
School Level
Summarizing the Results

Gender and Social Disadvantage

Gender and Social Disadvantage

- Does Intervention help in narrowing gap in learning outcomes of Girls between communities?

Gender and Social Disadvantage

- Does Intervention help in narrowing gap in learning outcomes of Girls between communities?
- Does Intervention help in improving the learning outcomes of Girls within socially disadvantaged communities?

Gender and Social Disadvantage

- Does Intervention help in narrowing gap in learning outcomes of Girls between communities?
- Does Intervention help in improving the learning outcomes of Girls within socially disadvantaged communities?
- Does Intervention help in narrowing gender gap in learning outcomes within communities?

Gender and Social Disadvantage

	Summary of impact of treatment on :								
	Girls between caste ${ }^{\text {a }}$			Girls within caste ${ }^{\text {b }}$			Gender gap within caste ${ }^{\text {c }}$		
Dep. var.	English	Maths	Science	English	Maths	Science	English	Maths	Science
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
OBC	$\begin{aligned} & -0.456 \\ & (0.634) \end{aligned}$	$\begin{aligned} & -0.037 \\ & (0.574) \end{aligned}$	$\begin{gathered} 0.328 \\ (0.576) \end{gathered}$	$\begin{aligned} & -0.305 \\ & (0.336) \end{aligned}$	$\begin{aligned} & -0.369 \\ & (0.307) \end{aligned}$	$\begin{aligned} & -0.033 \\ & (0.307) \end{aligned}$	$\begin{aligned} & -0.492 \\ & (0.456) \end{aligned}$	$\begin{aligned} & -0.579 \\ & (0.416) \end{aligned}$	$\begin{aligned} & -0.266 \\ & (0.418) \end{aligned}$
SC	$\begin{aligned} & -0.032 \\ & (0.445) \end{aligned}$	$\begin{gathered} 0.544 \\ (0.356) \end{gathered}$	$\begin{gathered} 0.106 \\ (0.308) \end{gathered}$	$\begin{gathered} 0.097 \\ (0.504) \end{gathered}$	$\begin{gathered} 0.170 \\ (0.456) \end{gathered}$	$\begin{aligned} & -0.236 \\ & (0.437) \end{aligned}$	$\begin{gathered} 0.025 \\ (0.635) \end{gathered}$	$\begin{gathered} 0.104 \\ (0.567) \end{gathered}$	$\begin{aligned} & -0.632 \\ & (0.577) \end{aligned}$
ST	-1.030 (0.867)	-0.540 (0.785)	-0.542 (0.788)	-0.922 (0.638)	$\begin{gathered} -0.956^{*} \\ (0.570) \end{gathered}$	-0.956 (0.593)	-0.803 (0.874)	-0.492 (0.778)	-0.268 (0.814)
Note:							<0.1; *	<0.05;	$\mathrm{p}<0.01$

${ }^{\text {a }}$ Data used for these regressions include all girls.
${ }^{\text {b }}$ Data used for these regressions include only girls from respective caste groups.
${ }^{\text {c }}$ Data used for these regressions include all students from respective caste groups.
Regressions also include a full set of interaction terms with a constant. Coefficients shown here are relevant interaction terms with Year, Treatment and Caste / Gender dummies as applicable. All regressions include district dummies and controls for school characteristics. Figures in brackets are standard errors and are clustered at taluk level.

Is Technology Gender Neutral?

	Dependent variable:			
	English	Maths	Science	
Prop.Female Teachers	0.318		0.009	
	(0.605)	(0.496)	(0.500)	
Girls:Prop.Female Teachers	-1.130	0.468	-0.540	
	(1.180)	(1.000)	(1.040)	
Prop.Female Teachers:Treatment	-0.823	-0.183	-0.539	
	(0.835)	(0.700)	(0.650)	
Prop.Female Teachers : Year(2015)	-0.450	-0.692	-1.190*	
	(0.750)	(0.557)	(0.632)	
Girls:Prop.Female Teachers:Treatment	2.310	0.763	1.790	
	(1.650)	(1.400)	(1.380)	
Girls:Prop.Female Teachers:Year(2015)	1.460	1.940*	$2.940 * *$	
	(1.410)	(1.170)	(1.420)	
Prop.Female Teachers:Treatment:Year(2015)	0.619	1.190	1.000	All regressions include district dummies and controls school characteristics. Figures in brackets
	(1.010)	(0.810)	(0.853)	
Girls:Prop.Female Teachers:Treatment:Year(2015)	-1.880	-3.030*	-2.660	
				Regressions also include a full set of interaction
Observations	159,129	159,129	159,129	terms with a constant. Only the relevant
R^{2}	0.248	0.257	0.283	coefficients are shown here.
Note:	${ }^{*} \mathrm{p}<0.1$;	${ }^{*} \mathrm{p}<0.05$;	${ }^{* *} \mathrm{p}<0.01$	

Is Technology Gender Neutral?

	Dependent variable:			
	English	Maths	Science	
Prop.Male Teachers	-0.314	0.369	-0.006	
	(0.603)	(0.494)	(0.499)	
Girls:Prop.Male Teachers	1.120	-0.464	0.531	
	(1.180)	(0.999)	(1.040)	
Prop.Male Teachers:Treatment	0.830	0.205	0.539	
	(0.830)	(0.698)	(0.648)	
Prop.Male Teachers:Year(2015)	0.437	0.684	1.180*	
	(0.748)	(0.555)	(0.629)	
Girls:Prop.Male Teachers:Treatment	-2.330	-0.800	-1.770	
	(1.640)	(1.390)	(1.380)	
Girls:Prop.Male Teachers:Year(2015)	-1.440	-1.920*	$-2.930^{* *}$	
	(1.410)	(1.170)	(1.420)	
Prop.Male Teachers:Treatment:Year(2015)	-0.610	-1.190	-1.010	All regressions include district dummies and controls school characteristics. Figures in brackets
	(1.000)	(0.808)	(0.846)	
Girls:Prop.Male Teachers:dummytT:Year(2015)	1.860	3.020*	2.630	are standard errors and are clustered at taluk level. Regressions also include a full set of interaction
	(1.970)	(1.660)	(1.890)	
Observations	159,129	159,129	159,129	terms with a constant. Only the relevant
R^{2}	0.248	0.257	0.283	coefficients are shown here.
Note:	* $\mathrm{p}<0.1$;	p<0.05;	* $\mathrm{p}<0.01$	

Table of Contents

Introduction
Context and Experiment Design
Estimation
Results

Student Level - Overall

Student Level - Gender Gap
Student Level - Social Disadvantage
Student Level - Gender + Social Disadvantage
School Level
Summarizing the Results

Results - School

Figure: School Average English score, Figure: School Average English score, 2014 2015

Results - School

Figure: School Average Maths score, 2014

Figure: School Average Maths score, 2015

Results - School

Figure: School Average Science score, Figure: School Average Science score, 2014 2015

School Level Average Value-add Scores

	Dependent variable:		
	English	Maths	Science
	(1)	(2)	(3)
Treatment	0.447	0.078	0.983
	(0.666)	(0.781)	(0.634)
Avg.English(2014)	$-0.459^{* * *}$		
	(0.031)		
Avg.Maths(2014)		$-0.420^{* * *}$	
		(0.043)	
Avg.Science(2014)			$\left(0.398^{* * *}\right.$
			$18.2032)$
Constant	$16.000^{* * *}$	$19.300^{* * *}$	$18.20{ }^{*}$
	(1.430)	(2.510)	(2.500)
Observations	1,246	1,246	1,246
R 2	0.408	0.335	0.364
Note:	${ }^{*} \mathrm{p}<0.1 ;{ }^{* *} \mathrm{p}<0.05 ;{ }^{* * *} \mathrm{p}<0.01$		

All regressions include district dummies.
Figures in brackets are standard errors and are clustered at taluk level.

Impact by Quartiles

Table: Pooled Regression - Quartiles - School Level Average Scores District Dummies

	School Average Scores			
	Q1	Q2	Q3	Q4
English	1.184	$2.109^{* *}$	-0.605	0.796
	(0.911)	(0.842)	(0.962)	(1.318)
Maths	0.085	1.493	-1.200	0.335
	(1.030)	(0.920)	(0.973)	(1.329)
Science	-0.412	1.830^{*}	1.084	$2.575^{* *}$
	(1.005)	(0.940)	(0.942)	(1.166)
Note:	${ }^{*} \mathrm{p}<0.1 ;{ }^{* *} \mathrm{p}<0.05 ;{ }^{* * *} \mathrm{p}<0.01$			

Table of Contents

Introduction

Context and Experiment Design

Estimation

Results

Student Level - Overall

Student Level - Gender Gap
Student Level - Social Disadvantage
Student Level - Gender + Social Disadvantage
School Level
Summarizing the Results

Summarizing the Results

Summarizing the Results

- Overall - Positive but not significant (yet)

Summarizing the Results

- Overall - Positive but not significant (yet)
- Overall gender gap seen narrowing in favor of boys.

Summarizing the Results

- Overall - Positive but not significant (yet)
- Overall gender gap seen narrowing in favor of boys.
- Schools around the median performance level benefit

Summarizing the Results

- Positive impact seen on some socially disadvantaged groups.

Summarizing the Results

- Positive impact seen on some socially disadvantaged groups.
- Girls within some socially disadvantaged groups are seen benefiting.

Summarizing the Results

- Positive impact seen on some socially disadvantaged groups.
- Girls within some socially disadvantaged groups are seen benefiting.
- Positive impact on gender gap within some socially disadvantaged groups.

Summarizing the Results

- Positive impact seen on some socially disadvantaged groups.
- Girls within some socially disadvantaged groups are seen benefiting.
- Positive impact on gender gap within some socially disadvantaged groups.

Conclusion and Way Forward

- Interim Results
- Project expected to generate richer data at student level
- Overall impact seems positive after 3 months of intervention
- Though more attention needed towards equity impact of technology use

Thank You ...

Pooled Regression on Quartiles by School Level Average

Scores

	School Average Scores											
	English				Maths				Science			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Treatment	$\begin{aligned} & -0.189 \\ & (0.683) \end{aligned}$	$\begin{aligned} & -0.214 \\ & (0.603) \end{aligned}$	$\begin{aligned} & -0.885 \\ & (0.697) \end{aligned}$	$\begin{aligned} & -0.958 \\ & (0.956) \end{aligned}$	$\begin{gathered} 0.369 \\ (0.773) \end{gathered}$	$\begin{gathered} 0.161 \\ (0.658) \end{gathered}$	$\begin{gathered} 0.427 \\ (0.704) \end{gathered}$	-0.178 (0.964)	$\begin{gathered} 0.926 \\ (0.754) \end{gathered}$	$\begin{gathered} \hline-1.417^{* *} \\ (0.673) \end{gathered}$	$\begin{aligned} & -0.686 \\ & (0.682) \end{aligned}$	$\begin{aligned} & -1.253 \\ & (0.846) \end{aligned}$
Year(2015)	$\begin{gathered} -3.951^{* * *} \\ (0.652) \end{gathered}$	$\begin{gathered} -7.653^{* * *} \\ (0.591) \end{gathered}$	$\begin{gathered} -6.973^{* * *} \\ (0.710) \end{gathered}$	$\begin{gathered} -10.338^{* * *} \\ (0.991) \end{gathered}$	$\begin{aligned} & 1.793^{* *} \\ & (0.737) \end{aligned}$	$\begin{gathered} -2.662^{* * *} \\ (0.645) \end{gathered}$	$\begin{gathered} -1.391^{*} \\ (0.718) \end{gathered}$	$\begin{gathered} -4.596^{* * *} \\ (1.000) \end{gathered}$	$\begin{gathered} -2.156^{* * *} \\ (0.720) \end{gathered}$	$\begin{gathered} -5.869^{* * *} \\ (0.659) \end{gathered}$	$\begin{gathered} -6.394^{* * *} \\ (0.695) \end{gathered}$	$\begin{gathered} -8.814^{* * *} \\ (0.877) \end{gathered}$
Treatment:Year(2015)	$\begin{gathered} 1.184 \\ (0.911) \end{gathered}$	$\begin{aligned} & 2.109^{* *} \\ & (0.842) \end{aligned}$	-0.605 (0.962)	$\begin{gathered} 0.796 \\ (1.318) \end{gathered}$	$\begin{gathered} 0.085 \\ (1.030) \end{gathered}$	$\begin{gathered} 1.493 \\ (0.920) \end{gathered}$	-1.200 (0.973)	$\begin{gathered} 0.335 \\ (1.329) \end{gathered}$	-0.412 (1.005)		$\begin{gathered} 1.084 \\ (0.942) \end{gathered}$	2.575** (1.166)
Constant	$\begin{gathered} 40.699^{* * *} \\ (1.492) \\ \hline \end{gathered}$	$\begin{gathered} 45.928^{* * *} \\ (1.029) \\ \hline \end{gathered}$	$\begin{gathered} 49.178^{* * *} \\ (0.996) \\ \hline \end{gathered}$	$\begin{gathered} 56.854^{* * *} \\ (1.694) \\ \hline \end{gathered}$	$\begin{gathered} 38.022^{* * *} \\ (1.688) \\ \hline \end{gathered}$	$\begin{gathered} 46.047^{* * *} \\ (1.124) \\ \hline \end{gathered}$	$\begin{gathered} 48.540^{* * *} \\ (1.007) \\ \hline \end{gathered}$	$\begin{gathered} 54.448^{* * *} \\ (1.708) \\ \hline \end{gathered}$	$\begin{gathered} 40.990^{* * *} \\ (1.648) \\ \hline \end{gathered}$	$\begin{gathered} 48.272^{* * *} \\ (1.149) \\ \hline \end{gathered}$	$\begin{gathered} 51.342^{* * *} \\ (0.975) \\ \hline \end{gathered}$	$\begin{gathered} 58.436^{* * *} \\ (1.499) \\ \hline \end{gathered}$
Observations	624	622	624	622	624	622	624	622	624	622	624	622
R^{2}	0.182	0.357	0.344	0.322	0.120	0.109	0.118	0.164	0.175	0.241	0.274	0.280
Adjusted R^{2}	0.155	0.335	0.323	0.300	0.091	0.080	0.088	0.136	0.148	0.216	0.250	0.256
Residual Std. Error	5.685	5.250	5.985	8.146	6.428	5.734	6.051	8.215	6.275	5.861	5.857	7.208
F Statistic	$6.717^{* * *}$	$16.654^{* * *}$	$15.832^{* * *}$	$14.292^{* * *}$	$4.102^{* * *}$	$3.695^{* * *}$	$4.015^{* * *}$	$5.899^{* * *}$	$6.402^{* * *}$	$9.560^{* * *}$	$11.394^{* * *}$	$11.678^{* * *}$
Note:										* $\mathrm{p}<0$.	1; **p<0.05	${ }^{* * *} \mathrm{p}<0.01$

