Sanitation and child health in India

Britta Augsburg

EDePo at the Institute for Fiscal Studies, London

Paul Rodriguez-Lesmes

Department of Economics, University College London

UNU-Wider conference, Human Capital and Growth, Helsinki

Session: Early Life I

June 6-7, 2016

This study

Research question: Do improvements in the sanitation environment improve child health (stunting)?

Mechanisms: Sanitation as a means to isolate (toxic) faeces from the environment \rightarrow lower exposure \rightarrow reduce illnesses \rightarrow improve health (\rightarrow improve later life outcomes)

Necessary condition for economic development?

- Lack of/bad sanitation hampers economic growth:
 - India: 6.4% of GDP (US\$53.8 billion)
 - Indonesia: 2.3% of GDP (US \$6.3 billion)
 - Nigeria: 1.3% of GDP (US\$3 billion) [WSP estimates]
- Largest contributor: Health (health costs, reduced productivity, absenteeism at school and workplace, loss of skills), other: tourism, environment, premature death, etc

"That such [epidemic, endemic, and other] disease, wherever its attacks are frequent, [...], and that where those circumstances are removed by drainage, proper cleansing, better ventilation, and other means of diminishing atmospheric impurity, the frequency and intensity of such disease is abated; and where the removal of the noxious agencies appears to be complete, such disease almost entirely disappears."

Edwin Chadwick, **1848**, "Report on an inquiry into the sanitary condition of the labouring population of Great Britain"

=> Basic sanitation recognized as indispensable element of disease prevention and primary health care programs (Declaration of Alma-Ata, 1978)

Missing toilets:

- ~2.5 billion w/o access to improved sanitation
- Main contributing country: India (59% of OD'ers)

 Labour force is affected, but most vulnerable group are children:

UNICEF:

- About 4 billion cases of diarrhoea per year cause 1.8 million deaths, > 90% among children<5yrs
- 6,000 child deaths per day due to water- and sanitation related diseases (primarily diarrhoea)
- Importantly, disease (worms, diarrhoea) early in life associated with short (Nokes et al, 1992a, 1992b, Checkley et al, 2008) and long-term effects on human capital (Moore et al, 2001; Almond and Currie, 2011; Bozzoli et al, 2009)

- Strong focus on policy side:
 - SDG: Water and safe sanitation to everyone, everywhere by 2030
 - Ghandi: "Sanitation more important than independence"
 - Modi: "Toilets before temples"
- However:
 - No global agreement on reason for low coverage
 - Efficient program design unclear: What constraints are binding and important to address?

- While some studies that are able to attribute improved household sanitation to child health (Spears, 2012; Kumar & Vollmer, 2013; Pickering et al, 2015).
- Recent RCT impact evaluations have in most cases not been able to demonstrate health (and other) benefits of low-cost sanitation (interventions) (Clasen et al., 2014; Patil et al, 2014, Briceño et al, 2014)
- Advances in focusing more on coverage (Gertler et al, 2014; Geruso & Spears, 2014; Hammer, 2013), in the context of population density (Hathi et al, 2014; Spears, 2014; Vyas et al, 2014; Coffey, 2014)

Contribution of this study

- Evidence of the effect of (low-cost) sanitation coverage in developing countries on child health (accounting for endogeneity, IV)
- Urban setting (registered slums and peripheral villages)
- Differential impacts by gender

The context

India:

- Sanitation coverage: 22% in 2001, 31% in 2011
- Toilets to be constructed per minute (from 1st Jan 2015):
 - 81 to meet Gol's goal of eliminating OD by 2019
 - 41 to meet United Nation's goal by 2025

Urban/slums:

- 17% of urban population lives in slums
- Slum-dwellers tend to be neglected: 81% inadequate access (2008-09 National Sample Survey Organisation)

Data

 Collected as part of an impact evaluation of a sanitation program in Gwalior, India:

Child characteristics

- Focus on children age 5 or younger
 - Average height for age z-score: -1.6 (sd 2.2)
 - ~44% stunted (score <-2)</p>
 - In line with 2013-14 Rapid Survey on Children by Ministry of Women and Child Development & UNICEF
- HH background: mainly Hindu, 6-7 members, annual income ~ US\$2,000, strong dwelling structure (60%), 56% of mothers no formal education, 51% own a toilet

Methodology

Estimate:

$$Q_{i,v} = \alpha + \gamma E S_v + \delta_1 X_{i,v}^c + \delta_2 X_{i,v}^{hh} + \delta_3 X_{i,v}^v + \varepsilon_{i,v}^Q$$

- $-Q_{i,v}$: health (height for age) of child i
- $-X_{i,v}$: child, household and community level characteristics

 ES_v : % of households in the same slum as child I, that use sanitation infrastructure: $ES_v = \frac{1}{N_v} \sum_{i=1}^{I_v} S_{i,v}$.

- 51% own a toilet (used by ~90%)
- 5% of non-owners use toilet

• Instrumental variable approach to address endogeneity of ES_v

(Example: HHs in high density slums with bad health infrastructure possibly more likely to make health investment, improving the disease environment)

• Instrument: Sanitation raw material price

First stage: $ES_v = \mu_0 + \mu_1 X_{i,v}^c + \mu_2 X_{i,v}^{hh} + \mu_3 X_{i,v}^v + \mu_2 Z_v + \varepsilon_{i,v}^{ES}$

Motivation: Production function literature (prices affect investment decision, without entering production function directly.)

Relevance:

Reported reasons for now owning toilet: Cost!

Sample: Households included in the main regression

- Prices: Material input prices (labor costs not used as they might hide worker quality)
 - Prices of cement, pipes, tiles and tin sheds
 - Collected from local suppliers in the study slums
 - Aggregated to price for typical toilet in area (pour flush pit toilet)
 - Average: US\$ 178 (at that time)

Relevance:

Sanitation raw material prices and uptake:

- Uncorrelated with error term, $\varepsilon_{i,v}^Q$.
 - Depends on competitive nature of market
 - Market considered well developed in MP (Godfrey, 2008)
 - Prices not specific to toilet construction
 - Demand for toilets unlikely to affect price, especially from slum-dwellers (basic toilets)

Results - overall

- IV: 10% increase in sanitation coverage -> ~0.7cm increase in 4 year old child (F-stat: 12.9)
- OLS downward biased

	(1)	(2)
	OLS	IV
Panel A: Second Stage		
Village % who uses a toilet	0.004	0.017**
	(0.005)	(0.008)
Panel B: First Stage		
Sanitation Raw Mat Price (1000 Rps)		-8.057***
		(2.244)
F-Stat		12.89
Obs	892	864
Clust	41	40
R2 Adj	0.11	0.10

Results - overall

- How do results compare?
- Richard et al (2013), cohort study, impact of diarrhea in first 2 years of life: 0.38cm
- Hammer & Spears (2013), evaluation of programme in MP: increase of toilet ownership of 8.2% leads to 0.3-0.4sd increase (1.3cm in 4yr old)
- Gertler et al. (2014 WP) in India: reduce OD by half (i.e. ~40% increase in coverage), increase of ~ 0.4sd

Results – by gender

- Impacts driven by girls
- 10% increase in sanitation coverage -> 1.05cm

	OLS			IV		
	MALE	FEMALE	вотн	MALE	FEMALE	вотн
Panel A: Second Stage						
Village % who uses a toilet	0.002	0.007		0.008	0.025***	
	(0.006)	(0.005)		(0.009)	(0.009)	
Village Avg * Boy			0.003			0.014
			(0.005)			(0.009)
Village Avg * Girl			0.004			0.021***
			(0.005)			(0.008)
Girl			0.017			-0.224
			(0.208)			(0.295)
Panel B: First Stage						
Sanitation Raw Mat Price (1000 Rps)				-8.252***	-8.045***	
				(2.115)	(2.309)	
F-Stat				15.22	12.13	18.65/ 12.93

Results – by gender

Two possible mechanisms

 Continued exposure: I.e. the environment improved but contact with bacteria decrease only/more for girls.

<u>Data</u>: If toilet not used by all (12%), it is the males who do not use it (boys and men)

2. Differential investment by gender: i.e. boys preference shown to be important in India, Pande and Astone 2007; differential investment (Barcellos et al, 2014; Das Gupta 1987; Jayachandra and Kuziemko 2010, and others)

<u>Data</u>: imperfect and not conclusive (breastfeeding, nutrition)

Robustness

- We find that price variation driven by location/access
- ⇒Are factors that drive price variation correlated with other child health inputs?

⇒Results are robust to inclusion of community location index an

Robustness

- Do estimations suffer from omitted variables, important in determining child health?
 - → Nutrition: Data constraints do not allow to include in analysis (and it would also be endogenous), correlation with instrument suggests, if anything, to be positive with prices

	(1)	(2) Dietary Diver	(3)
Raw materials price index	ALL	HH Cont	MAIN
	0.053	0.101*	0.094
	(0.054)	(0.053)	(0.057)
Obs	627	520	463
Clust	43	40	40
R2 Adj	0.01	0.07	0.06

Robustness - clusters

- Rule of thumb that one should worry with less than 42 clusters (Bertrand, Dullflo, Mullainathan (2004); Cameron, Gelbach and Miller (2008), Angrist & Pischke (2008))
 - → we're roughly (borderline) ok
- However, this is under equal cluster size (MacKinnan & Webb (2016))
 - → Not the case for us!

@ Institute for Piscal St

 We follow Davidson & MacKinnon (2010): "wild restricted efficient residual bootstrap" (different combinations)

			Main b eta	Main ₫ -stat	Analytical - val	Wild ₽ -val	Wild Œ ff.	Wild@holV
					cluster2 "sandwich"2 formula2(the2 cluster2option2 in25tata)	clustering@s@n@Cameron @	"WildRestrictedEfficient ResidualBoostrap" (correctionIromDavidson- MacKinnonI2010),Irobust toBveakInstruments)	Miller 2008), Without considering djustment 2
	Overall Impact		1 0.260	2.104	0.035	0.057	0.056	0.072
	Genderampacts	Male	0.014	1.492	0.136	0.116	0.148	0.148
tudi		Female	0.021	2.660	0.008	0.022	0.010	0.006

Conclusion

- Show that increases in sanitation coverage in (semi) urban areas benefit young girl's health, but not boys
- In the process of exploring two possible mechanisms:
 - Continued exposure to faeces due to non-usage
 - Differential investment
- Given the evidence on higher investment in boys, increasing sanitation coverage is a policy that implicitly targets girls

THANK YOU!

APPENDIX SLIDES:

	BAS	SIC	MAIN	
	Mean	SD	Mean	SD
Social background				
Religion: Muslim	22.3%		24.1%	
Caste: Forward caste	18.5%		18.7%	
Caste: Minority backward caste	5.2%		5.7%	
Caste: Scheduled caste or tribe	28.6%		28.8%	
HH Characteristics				
Number of HH members	6.6	2.5	6.5	2.4
Number of children under 5	1.5	0.7	1.5	0.7
Number of male HH members	3.3	1.6	3.2	1.6
Any household shock last 12 months	9.8%		8.2%	
Income†	70.1	47.6	69.0	47.1
Consumption Expenditures†	101.8	81.8	97.6	76.2
Type of dwelling: strong	59.2%		56.7%	
Main woman characteristics				
Education: no formal	56.3%		56.7%	
Education: 1-5 yrs	14.2%		13.9%	
Education: 6-8 yrs	16.2%		16.8%	
Education: 9 yrs +	13.2%		12.5%	
Age (Yrs)	31.5	10.1	31.4	10.1
Height (cm)	149.6	6.7	149.6	6.6
Sanitation and Hygiene				
Owns a toilet	48.8%		48.1%	
Uses a toilet	47.2%		47.0%	
Total Households	299		278	
Households Round 1	267		248	
Households Round 2	440		383	

Length/height-for-age z-score distribution (0-5yrs)

Drivers of variation in Instrument I

 Variation in prices – location/access: the further away from the city centre, the higher the prices:

Drivers of variation in Instrument II

Table 5: Raw Materials Prices and Village Characteristics

OLS regression with Raw Materials Prices as a dependent variable						
	(1)	(2)	(3)	(4)	(5)	
Inner Gwalior area	-1.411***	-1.423***	-1.033**	-1.020*	-0.600	
	(0.459)	(0.511)	(0.449)	(0.574)	(0.529)	
Village Scale and Location Index		-0.760***			-0.488**	
		(0.252)			(0.234)	
General Prices Index			-1.013***		-0.931***	
			(0.162)		(0.161)	
Water and Garbage disposal Index				-0.522	-0.321	
				(0.352)	(0.274)	
N Observations	78	69	74	75	68	
N Villages	43	37	39	40	36	
R Sqrd	0.148	0.297	0.459	0.207	0.556	

Notes: Own calculations based on FINISH sanitation household data for Gwalior and raw materials prices from Gautam (2016). All specifications include a Round dummy. SE clustered at village level in parenthesis. Significance: * 10%, ** 5%, *** 1%.

Impacts by age

 Impacts primarily age 6-22 months (largest placidity in growth and not exclusively breastfed anymore)

Robustness checks - controls

	(1)	(2)
	BASE	MAIN
: Second Stage		
% who uses a toilet	0.012** (0.006)	0.017** (0.008)
Prices Index	(0.000)	(0.000)
Scale and Location Index		
diversity measure		
3: First Stage		
	17.13	12.89
	964	864
	43	40
	0.09	0.10

With and without controls

Robustness checks - location

	(2)	(3)
	MAIN	LOC
: Second Stage		
% who uses a toilet	0.017**	0.017*
	(0.008)	(0.010)
Prices Index		
Scale and Location Index		-0.049
		(0.118)
diversity measure		
3: First Stage		
	12.89	10.20
	864	813
	40	37
	0.10	0.10

Robust to inclusion of location index

Robustness checks - prices

	(2) MAIN	(4) PRI
l: Second Stage		
% who uses a toilet	0.017**	0.035
	(0.008)	(0.039)
Prices Index		-0.339
		(0.450)
Scale and Location Index		
diversity measure		
3: First Stage		
-	12.89	1.28
	864	820
	40	39
	0.10	0.04

Including prices
 takes away strength
 of instrument, we
 are not able to make
 conclusion

Robustness checks – nutrition

	(2)	(5)	(6)
	MAIN	U18	A18
: Second Stage			
% who uses a toilet	0.017**	0.022	0.017**
	(0.008)	(0.024)	(0.007)
Prices Index			
Scale and Location Index			
diversity measure			
3: First Stage			
	12.89	8.51	14.97
	864	200	664
	40	37	40
	0.10	0.06	0.11

 Impacts driven by those > 18 months

Robustness checks – nutrition

	(2)	(7)	(8)
	MAIN	A18	A18 †
l: Second Stage			
% who uses a toilet	0.017**	0.001	-0.000
	(0.008)	(0.008)	(0.007)
Prices Index			
Scale and Location Index			
diversity measure		0.142***	
		(0.051)	
3: First Stage			
	12.89	17.00	15.94
	864	472	472
	40	40	40
	0.10	0.17	0.16

 However, inclusion of nutrition biases the sample (to those where not impacts observed)

Results – by gender

Differential impacts by gender: increase in sanitation coverage by 10% improving the height for age for girls by 0.27 standard deviations (~1.17cm).

- ⇒ Hammer & Spears (2013): program impact: 0.3-0.4 sd (1.3cm in 4yr old), impact on toilet ownership: 8.2%
- ⇒Gertler et al, India: reduce OD by half (i.e. ~40% increase in coverage), increase of ~ 0.4sd
- ⇒Our estimate between these two studies

Possible mechanisms 2

Differential investment by gender:

- India: families have explicit preferences for having sons over daughters (Pande and Astone 2007)
- "[...] boys receive more childcare time than girls, they are breastfed longer and they get more vitamin supplementation" Barcellos et al (2014, AEJ)
 - More nutrition (Das Gupta, 1987)
 - more healthcare (Basu 1989, Ganatra and Hirve, 1994)
 - breastfed for longer (Jayachandra and Kuziemko 2010)
 - more likely to be vaccinated (Borooah 2004)
- => Improvement in sanitation environment more valuable to girls?

Madhya Pradesh, sanitation and health DHS 2006 data

95% CI. DHS India 2006 for Madhya Pradesh, poorest to midle wealth categories Local constant estimator using an Epanechnikov kernel, bw=1.8.

