The Effects of Universal Primary Education on Attendance: Evidence from Burkina Faso

Georges Vivien Houngbonon

Paris School of Economics \& TSE-IDEI

7 juin 2016

Motivations

- Most countries in Sub-Saharan Africa implemented Universal Primary Education programs in early 2000s
- Large school construction + fees abolition
- Still no evidence on the effects of these programs on school attendance
- Theoretical predictions are ambiguous:
- Large school construction + fees abolition \rightarrow higher supply of education at lower price
- Fall in quality \rightarrow less incentive for schooling
- Related literature :
- Duflo (2001) in Indonesia : positive effect of school construction on educational attainement
- Deninger (2003) in Uganda : positive effect of fees abolition on attendance
- Harounan et al. (2013) in Burkina-Faso : positive effects of a specific school construction targeted at girls

This paper :

- The effects of Burkina-Faso's UPE program (PDDEB) on attendance
- Causal identification strategy : difference in trend between exposed and non-exposed birth cohorts
- Heterogenous effects with respect to age, gender, region of residence and grades
- Findings :
- Higher attendance in first grade of primary school
- Larger effects for younger children, girls, and children living in deprived areas
- Significant dropout from the third grade, particularly for girls

Scope of PDDEB

- Two phases :
- Phase 1:2002-2006, our focus
- Phase 2: 2006-2010
- Nation-wide, but more intense in some initially deprived "PP areas"
- Large school construction + free school supplies + fees abolition + awareness raising campaigns

Components of PDDEB1

- Large school construction (50\%) + free school supplies

Figure: School construction and Books distribution

Components of PDDEB1

- Fees abolition was not effective : no legal enforcement before 2007.

Variation wrt the previous year

	Av. 1997	2002	2004	2006
High schooling cost	0.512	$0.072^{* * *}$	$0.104^{* * *}$	$-0.047^{* * *}$
No School/Too Far	0.451	$-0.129^{* * *}$	$-0.060^{* * *}$	0.018^{*}

Significant at $1 \%\left({ }^{* * *}\right), 5 \%\left({ }^{* *}\right)$ and $10 \%\left(^{*}\right)$.
Table: Reasons for not attending school

Dataset

- Five repeated cross-sectional household surveys covering the academic years 1993-1994, 1997-1998, 2002-2003, 2004-2005 and 2006-2007.
- Information on school attendance
- Current and previous years attendance of a given grade
- + The highest grade completed for all individuals that ever attended school
- \rightarrow Outcome variable : having attended grade g as of a given year
- Additional information on year of birth, gender and place of residence
- + administrative database on the effectiveness of the program

Identification Strategy : Treated and Control Groups

- Two groups of birth cohorts: exposed (treated) vs. non-exposed (control)
- Non-exposed : cohorts that are more than 14 years old in 2002, i.e. born before 1988.

Figure: Share of individuals attending the first grade

Identification Strategy : Illustration

- Two-stage estimation :
- Fit the trend in school attendance across birth cohorts in the control group with a polynomial
- Extrapolate on treated cohorts and compare with their rate of school attendance

Figure: First grade attendance in 2006

Identification Strategy : Econometric model

- First-stage equation :

$$
\begin{equation*}
E_{i}=\alpha+\sum_{j=1}^{d} \beta_{j} Y_{i}^{j}+\mu_{i} \tag{1}
\end{equation*}
$$

E_{i} : dummy variable equals 1 if individual i born in year Y_{i} has attended the first grade as of a given academic year. d is the order of the polynomial, set to 3 in the main results and 2 in robustness checks. μ_{i} corresponds to the residuals of the model.

- Second-stage equation :

$$
\begin{equation*}
E_{i}=\hat{\alpha}+\sum_{j=1}^{d} \hat{\beta}_{j} Y_{i}^{j}+\sum_{y=1986}^{2000} \delta_{y} D_{i y}+\varepsilon_{i} \tag{2}
\end{equation*}
$$

$\hat{\alpha}$ and $\hat{\beta}_{j}$ are the estimated coefficients from the first stage regression. $D_{i y}$ is a dummy variable taking 1 if the individual i is born in year y; and 0 otherwise.

Main Results : Older cohorts

- Significant effect on older cohorts

	2006	2005	2004	2003	2002	2001
Born in 1986	0.933	1.091	1.391	1.399	1.410^{*}	1.410^{*}
	(0.0751)	(0.157)	(0.311)	(0.318)	(0.280)	(0.280)
Born in 1987	1.122	1.318^{*}	1.325	1.333	1.243	1.244
	(0.0904)	(0.190)	(0.296)	(0.303)	(0.247)	(0.247)
Born in 1988	$1.175^{* *}$	$1.380^{* *}$	1.479^{*}	1.469^{*}	$1.490^{* *}$	$1.490^{* *}$
	(0.0947)	(0.199)	(0.330)	(0.334)	(0.296)	(0.296)
Born in 1989	1.164^{*}	$1.367^{* *}$	1.352	1.341	1.473^{*}	1.461^{*}
	(0.0937)	(0.197)	(0.302)	(0.305)	(0.292)	(0.290)
Born in 1990	$1.411^{* * *}$	$1.640^{* * *}$	$1.683^{* *}$	$1.659^{* *}$	1.311	1.288
	(0.114)	(0.236)	(0.376)	(0.377)	(0.260)	(0.256)
Born in 1991	$1.230^{* *}$	$1.438^{* *}$	$1.887^{* * *}$	$1.856^{* * *}$	1.438^{*}	1.414^{*}
	(0.0991)	(0.207)	(0.422)	(0.422)	(0.285)	(0.281)
Born in 1992	$1.536^{* * *}$	$1.791^{* * *}$	$1.789^{* * *}$	$1.697^{* *}$	1.270	1.211
	(0.124)	(0.258)	(0.400)	(0.386)	(0.252)	(0.241)
Born in 1993	$1.447^{* * *}$	$1.652^{* * *}$	$1.878^{* * *}$	$1.795^{* *}$	1.461^{*}	1.344
	(0.117)	(0.238)	(0.420)	(0.408)	(0.290)	(0.267)
Born in 1994	$1.496^{* * *}$	$1.681^{* * *}$	$1.684^{* *}$	1.535^{*}	1.313	0.994
	(0.120)	(0.242)	(0.376)	(0.349)	(0.260)	(0.197)

Main Results in 2006

- Larger effects on younger cohorts $==>$ kids enter earlier at school
- Larger effects on girls $==>$ lower gender inequality
- Larger effects in initially deprived areas $==>$ lower regional inequality

	YC	Girls	PP areas
Born in 1995	$2.188^{* * *}$	$2.731^{* * *}$	$3.805^{* * *}$
	(0.176)	(0.276)	(0.704)
Born in 1996	$1.728^{* * *}$	$2.305^{* * *}$	$2.972^{* * *}$
	(0.139)	(0.233)	(0.550)
Born in 1997	$1.974^{* * *}$	$2.862^{* * *}$	$3.926^{* * *}$
	(0.159)	(0.289)	(0.726)
Born in 1998	$1.720^{* * *}$	$2.608^{* * *}$	$3.868^{* * *}$
	(0.138)	(0.263)	(0.715)

Main Results : Higher grades

- Early dropout from the third grade, particularly for girls

	1st grade (G1)		2nd grade (G2)		3rd grade (G3)	
	All	Girls	All	Girls	All	Girls
Born in 1990	$1.411^{* * *}$	$1.350^{* * *}$	$1.680^{* * *}$	$1.608^{* * *}$	1.766^{*}	1.934
	(0.114)	(0.136)	(0.149)	(0.200)	(0.570)	(1.043)
Born in 1991	$1.230^{* *}$	$1.299^{* * *}$	$1.535^{* * *}$	$1.565^{* * *}$	1.508	1.707
	(0.0991)	(0.131)	(0.136)	(0.195)	(0.487)	(0.920)
Born in 1992	$1.536^{* * *}$	$1.718^{* * *}$	$2.001^{* * *}$	$1.957^{* * *}$	1.780^{*}	1.863
	(0.124)	(0.173)	(0.177)	(0.244)	(0.574)	(1.004)
Born in 1993	$1.447^{* * *}$	$1.610^{* * *}$	$1.904^{* * *}$	$1.709^{* * *}$	1.511	1.440
	(0.117)	(0.162)	(0.169)	(0.213)	(0.488)	(0.776)
Born in 1994	$1.496^{* * *}$	$1.672^{* * *}$	$2.052^{* * *}$	$1.739^{* * *}$	1.426	1.229
	(0.120)	(0.169)	(0.182)	(0.217)	(0.460)	(0.662)
Born in 1995	$2.188^{* * *}$	$2.731^{* * *}$	$3.106^{* * *}$	$2.768^{* * *}$	1.780^{*}	1.563
	(0.176)	(0.276)	(0.275)	(0.345)	(0.575)	(0.843)
Born in 1996	$1.728^{* * *}$	$2.305^{* * *}$	$2.565^{* * *}$	$2.110^{* * *}$	1.160	0.918
	(0.139)	(0.233)	(0.227)	(0.263)	(0.374)	(0.495)
Born in 1997	$1.974^{* * *}$	$2.862^{* * *}$	$2.867^{* * *}$	$2.433^{* * *}$	0.803	0.630
	(0.159)	(0.289)	(0.254)	(0.303)	(0.259)	(0.339)
Born in 1998	$1.720^{* * *}$	$2.608^{* * *}$	$2.118^{* * *}$	$1.642^{* * *}$	$0.334^{* * *}$	$0.219 * * *$
	(0.138)	(0.263)	(0.188)	(0.205)	(0.108)	(0.118)

Robustness Checks

- No effect if rate of entry followed a quadratic trend.

	Primary G1		Secondary G1	
	Cubic	Quadratic		Cubic
Born in 1990	$1.419^{* * *}$	$1.492^{* *}$	Born in 1982	1.100
	(0.163)	(0.273)		(0.071)
Born in 1991	1.214^{*}	1.243	Born in 1983	$1.175^{* *}$
	(0.139)	(0.227)		(0.076)
Born in 1992	$1.482^{* * *}$	$1.472^{* *}$	Born in 1984	0.970
	(0.170)	(0.269)		(0.063)
Born in 1993	$1.362^{* * *}$	1.306	Born in 1985	0.961
	(0.156)	(0.239)		(0.062)
Born in 1994	$1.370^{* * *}$	1.263	Born in 1986	$0.801^{* * *}$
	(0.157)	(0.231)		(0.052)
Born in 1995	$1.943^{* * *}$	$1.713^{* * *}$	Born in 1987	1.019
	(0.223)	(0.314)		(0.066)
Born in 1996	$1.484^{* * *}$	1.245	Born in 1988	1.060
	(0.170)	(0.228)		(0.069)
Born in 1997	$1.634^{* * *}$	1.297	Born in 1989	1.019
	(0.188)	(0.237)		(0.066)
Born in 1998	$1.368^{* * *}$	1.021	Born in 1990	0.958
	(0.157)	(0.187)		(0.062)

Conclusions and Extensions

- Higher attendance rate in the first grade of primary school : larger effects for younger children, girls, and children living in deprived areas
- $==>$ reduced delayed enrolment and gender and regional inequalities
- But significant dropout from the third grade, particularly for girls
- Reduced cost of entry into school, but lower quality
- Improvement : using a logistic trend and provide statistical tests for heterogenous effects.
- Extension : Investigate the effects on educational achievements.

THANKS

