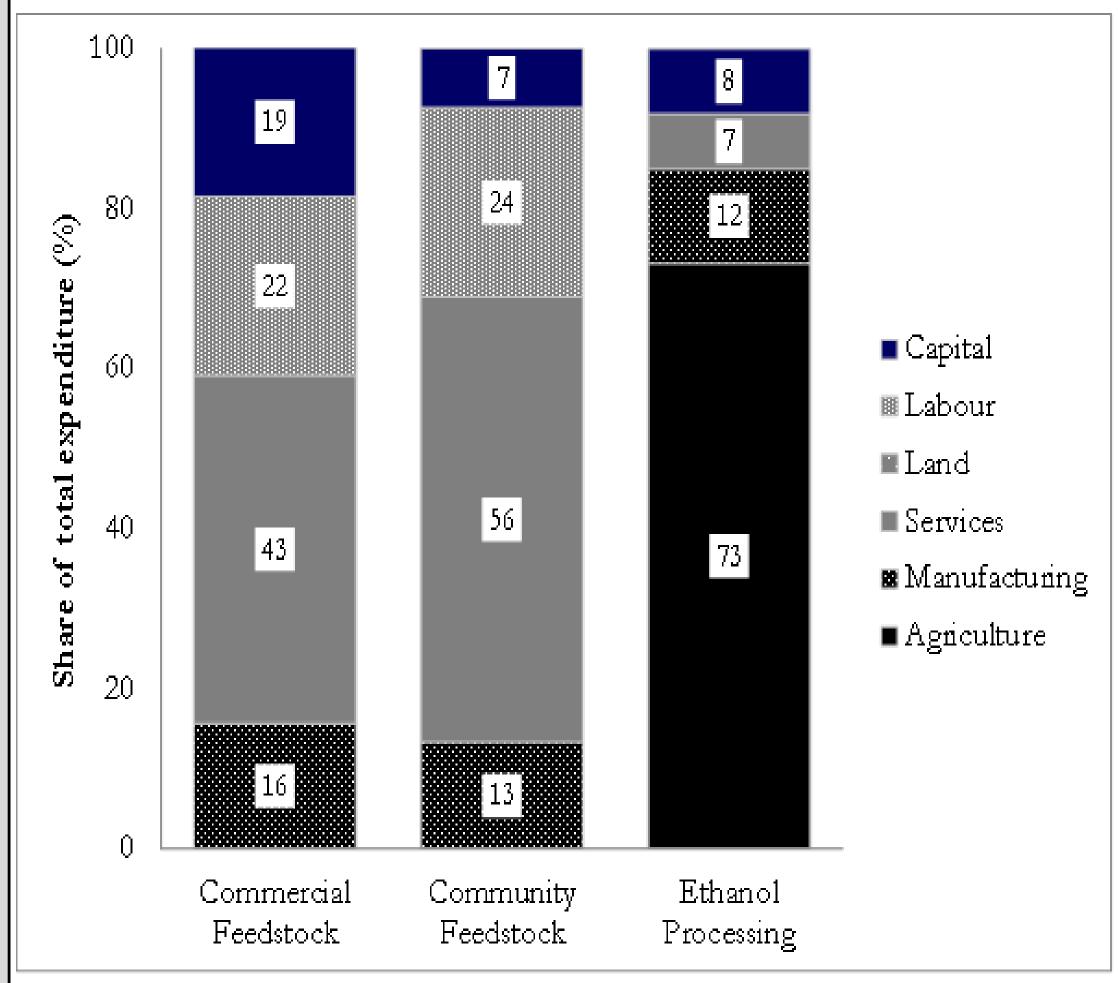
Economic impacts of developing a biofuel industry in Mozambique

by Faaiqa Hartley¹, Dirk van Seventer², Emilio Tostao³ and Channing Arndt⁴

¹Researcher, Energy Research Centre (ERC); <u>faaiqasalie@gmail.com</u>; ²Consultant with UNU WIDER; ³University Eduardo Mondlane in Maputo; ⁴UNU WIDER


Background and objective

- Biofuels demand in SADC expected to increase with blending mandates
 - Main market expected to be in SA
- Mozambique potentially key producer: favourable climate / land availability
 - National Biofuel Policy Strategy 2009: 10% in 2015 → 20% in 2021
- Literature suggests many benefits to biofuels production
 - Rural income / employment / BoP / climate change
- Crops identified in Mozambique:
 - Sugar: growing potential but lower global demand → alternative use
 - Sweet Sorghum: drought resistant, new but ignored here
 - Jatrova for biodiesel: implementation issues, previously investigated
- This analysis: impact of increased biofuels production for the SA market.
 - Concern for food security / food prices
 - Potential for cogeneration of electricity: successful elsewhere

Potential for biofuel production in Mozambique

- Currently, sugarcane mainly produced by 4 companies
 - Outgrower program for medium large & community farmers (12.5%)
 - Land availability: no constraint expected / infrastructure adequate
- Data collected on sugarcane production by CEPPAG (representative)
 - Production costs
 - Includes separate data on supporting outgrowers (community farming)
 - Community farming similar to commercial
 - Commercial operations takes care of most input costs
 - Returns to capital assumed to be same as Zambian field study
- Feedstock costs are estimated to be less than \$0.20 per litre
- Bioethanol processing cost data not available → use international data
 - Total costs estimated to be about US\$0.32-0.33 per litre

Figure 1: Feedstock and processing expenditure by component

Source: CEPPAG (2016); Own Calculations.

Model

- Standard Neoclassical CGE (Lofgren et al, 2002) using 2012 SAM
- Recursive dynamic, solve for each year
 - Investment current year → new capital stock next year
 - Capital stock updating based on relative activity size & return
 - Exogenous population and TFP growth→ base line GDP path
- Adjustment rules: flexible xrate & wage rates

Methodology biofuels modelling:

- Add biofuels activities to SAM with (close to) zero output
- Use cost structure from field data: mapped to model commodities
- Each feedstock is matched to its own ethanol production:
 - Separate value chains for large and small with or without cogen
 - Feedstock output is only supplied to matching ethanol
 - All ethanol is exported
- Cogeneration: ethanol input structure the same with or without
 - Use conversion factor of 70kWh/tonne @ cost of US\$0.08/kWh
 - Electricity generation free: value of output → additional to GOS
- Financing for all biofuels activities: foreign capital (no constraint)
 - After tax GOS repatriated

Scenarios: increase supply land exogenously to meet target

- 1. Expansion with existing shares of large (87.5%) / small (12.5%)
- 2. Expansion with bias towards small scale: equal shares
- 3. Cogen: Scenario 1. with electricity cogeneration
- 4. Displacement. 50% new small farmer feedstock from all other crops

Table 5: Sector Growth, 2015-2025

		_	Deviation from Baseline growth rate, 2015-2025 (%-point)			
		_	Sceanrio 1	Sceanrio 2	Sceanrio 3	Sceanrio 4
	Share, 2012	Baseline growth,	Bioethanol,	Bioethanol,	Bioethanol	Bioethanol
	(%)	2015-2025 (%)	status-quo	50-50	+ Cogeneration	+ Displacement
Total GDP	100.0	7.200	0.002	0.001	0.018	0.001
Agriculture	28.5	5.4	0.017	0.015	0.016	0.013
Food crops	20.6	5.2	-0.001	-0.001	-0.002	-0.007
Biofuel crops	0.0	0.0	187.276	184.713	187.276	187.276
Other agriculture	4.1	3.7	-0.004	-0.004	-0.004	-0.006
Forestry & Fishing	3.8	7.7	-0.017	-0.017	-0.017	-0.016
Mining	3.4	13.6	-0.013	-0.014	-0.006	-0.012
Manufacturing	11.7	4.4	0.012	0.010	0.182	0.011
Food processing	4.4	3.3	-0.003	-0.003	-0.003	-0.004
Biofuels processing	0.0	0.0	136.066	132.976	203.336	136.066
Other manufacturing	7.3	4.9	-0.002	-0.003	0.005	-0.003
Utilities & construction	6.4	6.4	0.001	0.000	0.001	0.001
Services	50.1	7.7	-0.003	-0.003	-0.001	-0.003

Source: Results from the Mozambique CGE model

Results: small

- GDP: Agriculture is up but other activities are down
 - Negative impact due to more intense competition for labour
 - Cogeneration most positive on GDP, more negative on other agr
- Employment: compositional
- Income Distribution: rural benefit but with cogen this is reversed

Variation: abundant unskilled labour

- From other regions during peak season (currently not the case)
- Impact more positive, most sectors and both rural and urban benefit

Conclusions

- Previous mistake due to lack of guaranteed demand for biofuels must be avoided in order to reap potential benefits. How? SADC or local mandate
- Food security risks are low and manageable due to abundant land but requires coordinated infrastructure program