Biofuels technology: A look forward

Growth and Development Policy Conference:

New Data, New Approaches, and New Evidence

01 December 2016

Dr. William Stafford,
Green Economy Solutions,
Natural Resources and Environment Unit,
Council for Scientific and Industrial Research
www.csir.co.za

Transport is significant user of energy (petroleum fuels) and GHG emissions

Top: Energy demand by end use *Bottom*: GHG emissions

Biofuels part of energy system

Biomass feedstock for biofuels

Biomass feedstocks for Biofuels: Land area a limiting/critical issue Optimal biomass yields: GJ/ha

- ➤ Wastes are limited in supply!
- ➤ Various processing routes ...and biofuel products

Biofuels technology commercialisation : a look forward

Biofuels are energy carriers to provide energy services

Biofuels technology: Conventional

	Conventional		
Description	First generation biofuels such as bioethanol,		
	biodiesel and biogas are produced		
	sugary/starchy biomass. Can replace or blend		
	with fossil fuels.		
	Currently commercially established.		
Feedstock	Food crops, food waste and sewage		
Energy carrier	Bioethanol, Biodiesel, Biogas		

Biofuels technology: Advanced

	Advanced
Description	Second generation biofuels are produced from ligno-cellulosic biomass .Third generation biofuels are from algae. Various stages of commercialization ranging from R&D to early commercial.
Feedstock	Forestry and Agriculture residues and wastes; Non-food crops (grasses, shrubs and trees). Algae
Energy carrier	Bioethanol, Biodiesel, Biogas Synfuels (methanol, DME) and Bio-SNG Algal fuels

Biofuels technology Alternative biofuels

	Alternative
Description	Non-carbon fuels such as hydrogen (combustion or fuel cell) and battery storage for electric vehicles. Require renewable energy resources to achieve carbon-emission reductions benefits. At demo- and early commercial stage mainly as a result of energy storage constraints.
Feedstock	Hydrogen from synthesis gas and anaerobic digestion. Electricity charge from solar, wind or other renewables ideally or municipal electricity alternatively
Energy carrier	Hydrogen (IC and fuel cell) Battery storage for electric vehicles

Barriers of future biofuels technology: Cost

Life cycle costing >Well to wheel

- Biofuels cost varies
- Biomass feedstock large cost component
- Economies of scale

Cannot compete with petrol/diesel

www.ssir.so.za.....unless subsidised/green premium

Barriers of future biofuels technology: GHG emissions

Carbon reduction compared to fossil fuels:

Life cycle Assessment (well to wheel)

Sugar cane ethanol, Rapeseed canola, Biogas

Cellulosic ethanol, BTL, Bio-SNG may offer greater carbon reductions

Gasoline replacement

Diesel replacement

Natural gas replacement

Note: The assessments exclude emissions from indirect land-use change. Emission savings of more than 100% are possible through use of co-products. Source: IEA analysis based on UNEP and IEA review of 60 LCA studies, published in OECD, 2008; IEA, 2009; DBFZ, 2009.

Biofuels benefits: Reduction in Carbon emissions and pollution

Both GHG and pollutions savings depend on technology pathway

Best options avoid costs from wastes disposal and pollution and LUC

Barriers of future biofuels technology: Ecological and social impacts

FOOD OR FUEL?

Nearly a billion people will go hungry tonight, yet this year the U.S. will turn nearly 5 billion bushels of corn into ethanol. That's enough food to feed 412 million people for an entire year.

Competition with food.....

- Land, water and agriculture/forestry inputs
- Biodiversity and Ecosystem impacts

Biofuels sustainability? Assessing the benefits of biofuels

- Assess performance on the basis of a Green economy (Low carbon, resource efficient and socially inclusive)
- Sustainability assessment and certification (RSPO, Bonsucro, RSB, ISCC etc)

Green economy	Green economy development criteria				
development	Low-carbon	Resource efficient	Socially Inclusive		
opportunities					
Food resilience and	*Reduce the fossil fuel and fertilisers requirements for	*Efficient use of water, land and soil nutrients/fertiliser	*A city where none goes hungry and has		
security	agriculture	*Food gardens and agriculture at the urban edge	access to affordable nutritious food.		
	*Improve the energy efficiency and renewable energy	*Reducing waste in the food supply chain			
	supply in the food supply chain				
Integrating	*Integrated plans to increase urban efficiency	*Productive landscapes and more efficient, resilient and	*Addressing vulnerable households and		
infrastructure and	through transit oriented development, urban	equitable settlement forms, where previously degraded land	communities with the provision of basic		
spatial planning	densification and compaction,	has been regenerated, and where biodiversity and the	services and mobility (transport)		
	*Optimise the development of low carbon	ecosystem services provided by our green infrastructure are	*Optimal use of land to improve living		
	infrastructure for accessible and affordable	protected and enhanced.	standards and mobility for large numbers of		
	transportation, accommodation, public services and	*Integrate spatial planning transport and communications	people		
	other amenities (i.e. transit oriented development).	with the development of a Smart city ⁸			
Increasing Mobility and	*Adopt Green transport fuels ⁹ at scale	*Optimised logistics	*Mass transit systems accessible and		
access to low carbon	*Increase mass transit (Rea <u>Vaya</u> , BRT) and non-	*Integrated transport and transit systems	affordable to all		
transportation	motorised transport systems	*Transit Oriented Development			
Integrated Water	*Reduce the energy and infrastructure needed for	*Increase demand side management, water efficiency and	*Intensify integrated water resources		
Resources Management	water harvesting, treatment and reticulation	water conservation	management (IWRM) to address water		
		*Increased re-use, and recycling of water	issues in a participatory and inclusive manner		
		*Diversification of water supply sources to address scarcity	to ensure "water for all"		
Integrated Waste	*Integrated waste and wastewater management to	*Waste prevention and reduction through Green product	*Inclusive and universal solid waste and		
management	reduce energy demand and carbon emissions	design and procurement	sewage disposal, collection and sanitisation		
	*Waste disposal and treatment with the provision of	*Zero waste to landfill through waste reuse, recovery and			
	bioenergy (i.e. biogas)	recycling.			
		*Reclamation of water and nutrients from waste and			
		wastewater treatment			
Energy efficiency and	*Increase energy efficiency and demand side	*Develop low carbon and resource efficient infrastructure	*Clean, renewable energy services available		
Green energy	management measures	and Green buildings	and affordable to all		
(renewable, clean	*Diversify the energy mix with increased low-carbon,	*Measure the performance of energy system in terms of the			
energy)	renewable energy supply systems	resource inputs (i.e. land, water, energy)			

Biogas for mobility and a Low-carbon development zone

- Conventional biofuels commercially established- Replace petrol, diesel and natural gas with little additional infrastructure and vehicle modification. Blended (5%) with existing fuels to facilitate gradual uptake and adoption (20-30% max).
- Advanced biofuels are at various stages of commercialisation-Access a wider range of biomass resources (ligno-cellulose via biochemical and thermochemical conversion). Algal biofuels.
- Alternative fuels- hydrogen and battery storage for electricity storage are at demo and early commercial stage- may be 'game changer'. Range and requirement for energy input from renewables
- The environmental benefits of biofuels, such as the reduction in carbon emissions and other pollutants requires LCA
- Other issues will also determine market uptake of biofuels. Cost-competitiveness with current fossil fuels and avoiding competition for land and biomass to produce food, feed, fibre and fine chemicals in the developing bio-economy. Biorefinery developments offer an improved integration of these product streams.

Thanks!

Contact: wstafford@csir.co.za

www.biosssam.org

